This restores the previous behavior of not including the mnemonic in the classes table for every target that starts instruction lines with the mnemonic. Not only did the table size increase by 1 entry, but the class enum increased in size which caused every class in the array to increase in size. It also grew the size of the function that parsers tokens into classes by a substantial amount.
This adds a new HasMnemonicFirst flag to all AsmParsers. It's set to 1 by default and Hexagon target overrides it to 0.
For the X86 target alone this recovers 324KB of size on the llvm-mc executable.
I believe the current state is still a bad design choice for the Hexagon target as it causes most of the parsing to do a linear search through the entire match table to comparing operands against every instruction until it finds one that works. At least for the other targets we do a binary search based on mnemonic over which to do the linear scan.
llvm-svn: 256669
We use to have an odd difference among MapVector and SetVector. The map
used a DenseMop, but the set used a SmallSet, which in turn uses a
std::set.
I have changed SetVector to use a DenseSet. If you were depending on the
old behaviour you can pass an explicit set type or use SmallSetVector.
The common cases for needing to do it are:
* Optimizing for small sets.
* Sets for types not supported by DenseSet.
llvm-svn: 253439
MCSubtargetInfo in the subclasses into MCTargetAsmParser and define a
member function getSTI.
This is done in preparation for making changes to shrink the size of
MCRelaxableFragment. (see http://reviews.llvm.org/D14346).
llvm-svn: 253124
represented by uint64_t, this patch replaces these
usages with the FeatureBitset (std::bitset) type.
Differential Revision: http://reviews.llvm.org/D10542
llvm-svn: 241058
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
Fixes PR23455, where, when TableGen generates the matcher from the
AsmString, it splits "cmp${cc}ss" into tokens, and the "ss" suffix
is recognized as the SS register.
I can't think of a situation where that's a feature, not a bug, hence:
when a token is "isolated", i.e., it is followed and preceded by
separators, it shouldn't be parsed as a register.
Differential Revision: http://reviews.llvm.org/D9844
llvm-svn: 238536
If there is an InstAlias defined for an instruction that had a custom
converter (AsmMatchConverter), then when the alias is matched,
the custom converter will be used rather than the converter generated
by the InstAlias.
This patch adds the UseInstAsmMatchConverter field to the InstAlias
class, which allows you to override this behavior and force the
converter generated by the InstAlias to be used.
This is required for some future improvemnts to the R600 assembler.
Differential Revision: http://reviews.llvm.org/D9083
llvm-svn: 238210
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables.
This should now be fixed.
llvm-svn: 238192
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
llvm-svn: 237234
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
This is what all the targets check for and is consistent with the
initialized value of MissingFeatures, which is sometimes assinged
to ErrorInfo.
llvm-svn: 231397
Accidentally committed a few more of these cleanup changes than
intended. Still breaking these out & tidying them up.
This reverts commit r231135.
llvm-svn: 231136
There doesn't seem to be any need to assert that iterator assignment is
between iterators over the same node - if you want to reuse an iterator
variable to iterate another node, that's perfectly acceptable. Just
don't mix comparisons between iterators into disjoint sequences, as
usual.
llvm-svn: 231135
All of the cases were just appending from random access iterators to a
vector. Using insert/append can grow the vector to the perfect size
directly and moves the growing out of the loop. No intended functionalty
change.
llvm-svn: 230845
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
This patch was generated by a clang tidy checker that is being open sourced.
The documentation of that checker is the following:
/// The emptiness of a container should be checked using the empty method
/// instead of the size method. It is not guaranteed that size is a
/// constant-time function, and it is generally more efficient and also shows
/// clearer intent to use empty. Furthermore some containers may implement the
/// empty method but not implement the size method. Using empty whenever
/// possible makes it easier to switch to another container in the future.
Patch by Gábor Horváth!
llvm-svn: 226161
This adds support for creating an InstAlias with a negative immediate, i.e.:
def NOT : InstAlias<"not $dst, $src", (XORI GR32:$dst, GR32:$src, -1)>;
by resolving this problem:
RISCVGenAsmMatcher.inc:95:11: error: expected '= constant-expression' or end of enumerator definition
CVT_imm_-1,
^^^^^^^^^^
Patch by Jordy Potman, thanks!
llvm-svn: 226073
On X86, the Intel asm parser tries to match all memory operand sizes when
none is explicitly specified. For LEA, which doesn't really have a memory
operand (just a pointer one), this results in multiple successful matches,
one for each memory size. There's no error because it's same opcode, so
really, it's just one match. However, the tablegen'd matcher function
adds opcode/operands to the passed MCInst, and this results in multiple
duplicated operands.
This commit clears the MCInst in the tablegen'd matcher function.
We sometimes clear it when the match failed, so there's no expectation of
keeping the previous content anyway.
Differential Revision: http://reviews.llvm.org/D6670
llvm-svn: 224347
This complicates a few algorithms due to not having random access, but
not by a huge degree I don't think (open to debate/design
discussion/etc).
llvm-svn: 223261
Seems libstdc++ on some buildbots is lacking std::map::emplace, which is
weird... reverting while I look into it.
This reverts commit r222937.
llvm-svn: 222939
Pointers and references to map elements are never invalidated (except on
removal, which isn't used here) so there's no need for the indirection
unless there's polymorphism at work.
A little const correctness had to be fixed, since the indirection
allowed some benign const violations.
llvm-svn: 222937
Since the elements were not polymorphic, the unique_ptr was only used to
avoid pointer invalidation on container resizes - might as well skip the
indirection and use a container with suitable invalidation semantics.
llvm-svn: 222931
ARM in particular is getting dangerously close to exceeding 32 bits worth of
possible subtarget features. When this happens, various parts of MC start to
fail inexplicably as masks get truncated to "unsigned".
Mostly just refactoring at present, and there's probably no way to test.
llvm-svn: 215887
I saw at least a memory leak or two from inspection (on probably
untested error paths) and r206991, which was the original inspiration
for this change.
I ran this idea by Jim Grosbach a few weeks ago & he was OK with it.
Since it's a basically mechanical patch that seemed sufficient - usual
post-commit review, revert, etc, as needed.
llvm-svn: 210427
Summary:
The minimal type needs to hold a value of '1ULL << 31' but
getMinimalTypeForRange() is called with a value of '1ULL << 32'.
This patch will also reduce the size of the matcher table when there are 8
or 16 SubtargetFeatures.
Also added a dump of the SubtargetFeatures to the -debug output and corrected getMinimalTypeInRange() to consider 0xffffffffull to be a 32-bit value.
The testcase is that no existing code is broken and that LLVM still successfully
compiles after adding MIPS64r6 CodeGen support.
Reviewers: rafael
Reviewed By: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3787
llvm-svn: 209288
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
llvm-svn: 206822
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
TableGen was sorting the entries in some of its internal data
structures by pointer. This order filtered through to the final
matching table and affected the diagnostics produced on bad assembly
occasionally.
It also turns out STL algorithms are ridiculously easy to misuse on
containers with custom order methods. (No bugs before, or now that I
know of, but plenty in the middle).
This should fix the sanitizer bot, which ends up with weird pointers.
llvm-svn: 190793
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
llvm-svn: 190598
clang bootstraps intermittently failed for me due a difference in
the MCK_Reg ordering in ARMGenAsmMatcher.inc. E.g. in my latest
run the stage 1 and stage 3 versions were the same but the stage 2
one was different (though still functionally correct). This meant
that the .o comparison failed.
MCK_Regs were assigned by iterating over a std::set< std::set<Record*> >,
and since std::set is sorted lexicographically, the order depended on the
order of the pointer values. This patch replaces the pointer ordering
with LessRecordByID.
llvm-svn: 188164
LLVM's coding standards recommend raw_ostream and MemoryBuffer for
reading and writing text.
This has the side effect of allowing clang to compile more of Support
and TableGen in the Microsoft C++ ABI.
llvm-svn: 187826
This removes the need to store the asm variant in each row of the single table that existed before. Shaves ~16K off the size of X86AsmParser.o.
llvm-svn: 187026