Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
DW_AT_specification and DW_AT_abstract_origin resolving was only performed
on subroutine DIEs because it used the getSubroutineName method. Introduce
a more generic getName() and use it to dump the reference attributes.
Testcases have been updated to check the printed names instead of the offsets
except when the name could be ambiguous.
Reviewers: dblaikie, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5625
llvm-svn: 219506
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
This was coming in weird debug info that had variables (and hence
debug_locs) but was in GMLT mode (because it was missing the 13th field
of the compile_unit metadata) so no ranges were constructed. We should
always have at least one range for any CU with a debug_loc in it -
because the range should cover the debug_loc.
The assertion just ensures that the "!= 1" range case inside the
subsequent loop doesn't get entered for the case where there are no
ranges at all, which should never reach here in the first place.
llvm-svn: 214939
Rather than relying on abstract variables looked up at the time the
concrete variable is created, look them up at the end of the module to
ensure they're referenced even if they're created after the concrete
definition. This completes/matches the work done in r209677 to handle
this for the subprograms themselves.
llvm-svn: 210946
In an effort to fix concrete variables referencing abstract origins
where the concrete variable preceeds the first inlined usage, the
addition of attributes such as name, file, etc will be delayed until the
end of the module (to wait to see if any inlined instances have
occurred, thus necessitating an abstract definition that the concrete
definition should also reference).
These test cases don't actually need to care about this ordering of
attributes, so update them to be more resilient to such changes coming
in the near future.
llvm-svn: 210940
After much puppetry, here's the major piece of the work to ensure that
even when a concrete definition preceeds all inline definitions, an
abstract definition is still created and referenced from both concrete
and inline definitions.
Variables are still broken in this case (see comment in
dbg-value-inlined-parameter.ll test case) and will be addressed in
follow up work.
llvm-svn: 209677
This is a precursor to fixing inlined debug info where the concrete,
out-of-line definition may preceed any inlined usage. To cope with this,
the attributes that may appear on the concrete definition or the
abstract definition are delayed until the end of the module. Then, if an
abstract definition was created, it is referenced (and no other
attributes are added to the out-of-line definition), otherwise the
attributes are added directly to the out-of-line definition.
In a couple of cases this causes not just reordering of attributes, but
reordering of types. When the creation of the attribute is delayed, if
that creation would create a type (such as for a DW_AT_type attribute)
then other top level DIEs may've been constructed during the delay,
causing the referenced type to be created and added after those
intervening DIEs. In the extreme case, in cross-cu-inlining.ll, this
actually causes the DW_TAG_basic_type for "int" to move from one CU to
another.
llvm-svn: 209674
This old test didn't have the argument numbering that's now squirelled
away in the high bits of the line number in the DW_TAG_arg_variable
metadata.
Add the numbering and update the test to ensure arguments are in-order.
llvm-svn: 209669
In an effort to fix inlined debug info in situations where the out of
line definition of a function preceeds any inlined usage, the order in
which some attributes are added to subprogram DIEs may change. (in
essence, definition-necessary attributes like DW_AT_low_pc/high_pc will
be added immediately, but the names, types, and other features will be
delayed to module end where they may either be added to the subprogram
DIE or instead reference an abstract definition for those values)
These tests can be generalized to be resilient to this change. 5 or so
tests actually have to be incompatibly changed to cope with this
reordering and will go along with the change that affects the order.
llvm-svn: 209554
A bunch of test cases needed to be cleaned up for this, many my fault -
when implementid imported modules I updated test cases by simply
duplicating the prior metadata field - which wasn't always the empty
metadata entry.
llvm-svn: 200731
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
Field 2 of DIType (Context), field 9 of DIDerivedType (TypeDerivedFrom),
field 12 of DICompositeType (ContainingType), fields 2, 7, 12 of DISubprogram
(Context, Type, ContainingType).
llvm-svn: 190205
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
llvm-svn: 189282
1> Use DebugInfoFinder to find debug info MDNodes.
2> Add disable-debug-info-verifier to disable verifying debug info.
3> Disable verifying for testing cases that fail (will update the testing cases
later on).
4> MDNodes generated by clang can have empty filename for TAG_inheritance and
TAG_friend, so DIType::Verify is modified accordingly.
Note that DebugInfoFinder does not list all debug info MDNode.
For example, clang can generate:
metadata !{i32 786468}, which will fail to verify.
This MDNode is used by debug info but not included in DebugInfoFinder.
This MDNode is generated as a temporary node in DIBuilder::createFunction
Value *TElts[] = { GetTagConstant(VMContext, DW_TAG_base_type) };
MDNode::getTemporary(VMContext, TElts)
llvm-svn: 186634
Fix up three tests - one that was relying on abbreviation number,
another relying on a location list in this case (& testing raw asm,
changed that to use dwarfdump on the debug_info now that that's where
the location is), and another which was added in r184368 - exposing a
bug in that fix that is exposed when we emit the location inline rather
than through a location list. Fix that bug while I'm here.
llvm-svn: 184387
This reverts commit r179840 with a fix to test/DebugInfo/two-cus-from-same-file.ll
I'm not sure why that test only failed on ARM & MIPS and not X86 Linux, even
though the debug info was clearly invalid on all of them, but this ought to fix
it.
llvm-svn: 179996
Adding another CU-wide list, in this case of imported_modules (since they
should be relatively rare, it seemed better to add a list where each element
had a "context" value, rather than add a (usually empty) list to every scope).
This takes care of DW_TAG_imported_module, but to fully address PR14606 we'll
need to expand this to cover DW_TAG_imported_declaration too.
llvm-svn: 179836
This reverts commit 342d92c7a0adeabc9ab00f3f0d88d739fe7da4c7.
Turns out we're going with a different schema design to represent
DW_TAG_imported_modules so we won't need this extra field.
llvm-svn: 178215
This is just the basic groundwork for supporting DW_TAG_imported_module but I
wanted to commit this before pushing support further into Clang or LLVM so that
this rather churny change is isolated from the rest of the work. The major
churn here is obviously adding another field (within the common DIScope prefix)
to all DIScopes (files, classes, namespaces, lexical scopes, etc). This should
be the last big churny change needed for DW_TAG_imported_module/using directive
support/PR14606.
llvm-svn: 178099
This makes DIType's first non-tag parameter the same as DIFile's, allowing them
to both share the common implementation of getFilename/getDirectory in DIScope.
llvm-svn: 177467
This is another step along the way to making all DIScopes have a common prefix
which can be added to in a general manner to support using directives
(DW_TAG_imported_module).
llvm-svn: 177462
This is the first step to making all DIScopes have a common metadata prefix (so
that things (using directives, for example) that can appear in any scope can be
added to that common prefix). DIFile is itself a DIScope so the common prefix
of all DIScopes cannot be a DIFile - instead it's the raw filename/directory
name pair.
llvm-svn: 177239
This is the next step towards making the metadata for DIScopes have a common
prefix rather than having to delegate based on their tag type.
llvm-svn: 176913
These cases were found by further work to remove support for debug info
versioning. Common cleanups (other than changing the version info in the tag
field) included adding the last parameter to compile_units (recently added for
fission support) and other cases of trailing fields in lexical blocks, compile
units, and subprograms.
llvm-svn: 176834
Mostly this is just changing the named metadata (llvm.dbg.sp, llvm.dbg.gv,
llvm.dbg.<func>.lv, etc -> llvm.dbg.cu), adding a few fields to older records
(DIVariable: flags/inlined-at, DICompileUnit: sp/gv/types,
DISubprogram: local variables list)
The tests to update were discovered by a change I'm working on to remove debug
info version support - so any tests using old debug info versions I haven't
updated probably are bad tests or just not actually designed to test debug
info.
llvm-svn: 176671