The SLP vectorizer should propagate IR-level optimization hints/flags (nsw, nuw, exact, fast-math)
when converting scalar instructions into vectors. But this isn't a simple copy - we need to take
the intersection (the logical 'and') of the sets of flags on the scalars.
The solution is further complicated because we can have non-uniform (non-SIMD) vector ops after:
http://reviews.llvm.org/D4015http://llvm.org/viewvc/llvm-project?view=revision&revision=211339
The vast majority of changed files are existing tests that were not propagating IR flags, but I've
also added a new test file for focused testing of IR flag possibilities.
Differential Revision: http://reviews.llvm.org/D5172
llvm-svn: 217051
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
Rewrote the SLP-vectorization as a whole-function vectorization pass. It is now able to vectorize chains across multiple basic blocks.
It still does not vectorize PHIs, but this should be easy to do now that we scan the entire function.
I removed the support for extracting values from trees.
We are now able to vectorize more programs, but there are some serious regressions in many workloads (such as flops-6 and mandel-2).
llvm-svn: 184647
We are not working on a DAG and I ran into a number of problems when I enabled the vectorizations of 'diamond-trees' (trees that share leafs).
* Imroved the numbering API.
* Changed the placement of new instructions to the last root.
* Fixed a bug with external tree users with non-zero lane.
* Fixed a bug in the placement of in-tree users.
llvm-svn: 182508
This commit adds the infrastructure for performing bottom-up SLP vectorization (and other optimizations) on parallel computations.
The infrastructure has three potential users:
1. The loop vectorizer needs to be able to vectorize AOS data structures such as (sum += A[i] + A[i+1]).
2. The BB-vectorizer needs this infrastructure for bottom-up SLP vectorization, because bottom-up vectorization is faster to compute.
3. A loop-roller needs to be able to analyze consecutive chains and roll them into a loop, in order to reduce code size. A loop roller does not need to create vector instructions, and this infrastructure separates the chain analysis from the vectorization.
This patch also includes a simple (100 LOC) bottom up SLP vectorizer that uses the infrastructure, and can vectorize this code:
void SAXPY(int *x, int *y, int a, int i) {
x[i] = a * x[i] + y[i];
x[i+1] = a * x[i+1] + y[i+1];
x[i+2] = a * x[i+2] + y[i+2];
x[i+3] = a * x[i+3] + y[i+3];
}
llvm-svn: 179117