usage of the shuffle bitmask. Both work in 128-bit lanes without
crossing, but in the former the mask of the high part is the same
used by the low part while in the later both lanes have independent
masks. Handle this properly and and add support for vpermilpd.
llvm-svn: 136200
On x86 we can't encode an immediate LHS of a sub directly. If the RHS comes from a XOR with a constant we can
fold the negation into the xor and add one to the immediate of the sub. Then we can turn the sub into an add,
which can be commuted and encoded efficiently.
This code is generated for __builtin_clz and friends.
llvm-svn: 136167
shuffle before inserting on a 256-bit vector.
- Add AVX versions of movd/movq instructions
- Introduce a few COPY patterns to match insert_subvector instructions.
This turns a trivial insert_subvector instruction into a register copy,
coalescing the xmm into a ymm and avoid emiting on more instruction.
llvm-svn: 136002
the way to go. Doing this here will prevent several node matches later,
and would have to force looking all the way through several
VINSERTF128/VEXTRACTF128 chains to optimize simple things.
llvm-svn: 135730
and was actually very wrong, fix it and make it simpler. Also remove the
ConcatVectors function, which is unused now.
- Fix a introduction of useless nodes in r126664 and r126264. The
VUNPCKL* should never be introduced cause we don't want duplicate
nodes for 128 AVX and non-AVX modes, the actual instruction
difference only exists during isel, but not for target specific DAG
nodes. We only introduce V* target nodes when there is no 128-bit
version already there.
- Fix a fragile test and make it more useful.
llvm-svn: 135729
instruction introduced in AVX, which can operate on 128 and 256-bit vectors.
It considers a 256-bit vector as two independent 128-bit lanes. It can permute
any 32 or 64 elements inside a lane, and restricts the second lane to
have the same permutation of the first one. With the improved splat support
introduced early today, adding codegen for this instruction enable more
efficient 256-bit code:
Instead of:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vextractf128 $1, %ymm0, %xmm1
shufps $1, %xmm1, %xmm1
movss %xmm1, 28(%rsp)
movss %xmm1, 24(%rsp)
movss %xmm1, 20(%rsp)
movss %xmm1, 16(%rsp)
vextractf128 $0, %ymm0, %xmm0
shufps $1, %xmm0, %xmm0
movss %xmm0, 12(%rsp)
movss %xmm0, 8(%rsp)
movss %xmm0, 4(%rsp)
movss %xmm0, (%rsp)
vmovaps (%rsp), %ymm0
We get:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vpermilps $85, %ymm0, %ymm0
llvm-svn: 135662
refactor the code and add a bunch of comments. The final shuffle
emitted by handling 256-bit types is suitable for the VPERM shuffle
instruction which is going to be introduced in a next commit (with
a testcase which cover this commit)
llvm-svn: 135661
to MCRegisterInfo. Also initialize the mapping at construction time.
This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.
llvm-svn: 135424
1) Make non-legal 256-bit loads to be promoted to v4i64. This lets us
canonize the loads and handle things the same way we use to handle
for 128-bit registers. Despite of what one of the removed comments
explained, the load promotion would not mess with VPERM, it's only a
matter of doing the appropriate bitcasts when this instructions comes
to be introduced. Also make LOAD v8i32 legal.
2) Doing 1) exposed two bugs:
- v4i64 was being promoted to itself for several opcodes (introduced
in r124447 by David Greene) causing endless recursion and the stack to
explode.
- there was no support for allOnes BUILD_VECTORs and ANDNP would fail to
match because it was generating early target constant pools during
lowering.
3) The testcases are already checked-in, doing 1) exposed the
bugs in the current testcases.
4) Tidy up code to be more clear and explicit about AVX.
llvm-svn: 135313
when determining validity of matching constraint. Allow i1
types access to the GR8 reg class for x86.
Fixes PR10352 and rdar://9777108
llvm-svn: 135180
During type legalization we often use the SIGN_EXTEND_INREG SDNode.
When this SDNode is legalized during the LegalizeVector phase, it is
scalarized because non-simple types are automatically marked to be expanded.
In this patch we add support for lowering SIGN_EXTEND_INREG manually.
This fixes CodeGen/X86/vec_sext.ll when running with the '-promote-elements'
flag.
llvm-svn: 135144
Drop the FpMov instructions, use plain COPY instead.
Drop the FpSET/GET instruction for accessing fixed stack positions.
Instead use normal COPY to/from ST registers around inline assembly, and
provide a single new FpPOP_RETVAL instruction that can access the return
value(s) from a call. This is still necessary since you cannot tell from
the CALL instruction alone if it returns anything on the FP stack. Teach
fast isel to use this.
This provides a much more robust way of handling fixed stack registers -
we can tolerate arbitrary FP stack instructions inserted around calls
and inline assembly. Live range splitting could sometimes break x87 code
by inserting spill code in unfortunate places.
As a bonus we handle floating point inline assembly correctly now.
llvm-svn: 134018
optimizations when emitting calls to the function; instead those calls may
use faster relocations which require the function to be immediately resolved
upon loading the dynamic object featuring the call. This is useful when it
is known that the function will be called frequently and pervasively and
therefore there is no merit in delaying binding of the function.
Currently only implemented for x86-64, where it turns into a call through
the global offset table.
Patch by Dan Gohman, who assures me that he's going to add LangRef documentation
for this once it's committed.
llvm-svn: 133080