This reintroduces "[ORC] Introduce EPCGenericRTDyldMemoryManager."
(bef55a2b47) and "[lli] Add ChildTarget dependence
on OrcTargetProcess library." (7a219d801b) which were
reverted in 99951a5684 due to bot failures.
The root cause of the bot failures should be fixed by "[ORC] Fix uninitialized
variable." (0371049277) and "[ORC] Wait for
handleDisconnect to complete in SimpleRemoteEPC::disconnect."
(320832cc9b).
This reverts commit bef55a2b47 while I investigate
failures on some bots. Also reverts "[lli] Add ChildTarget dependence on
OrcTargetProcess library." (7a219d801b) which was
a fallow-up to bef55a2b47.
EPCGenericRTDyldMemoryMnaager is an EPC-based implementation of the
RuntimeDyld::MemoryManager interface. It enables remote-JITing via EPC (backed
by a SimpleExecutorMemoryManager instance on the executor side) for RuntimeDyld
clients.
The lli and lli-child-target tools are updated to use SimpleRemoteEPC and
SimpleRemoteEPCServer (rather than OrcRemoteTargetClient/Server), and
EPCGenericRTDyldMemoryManager for MCJIT tests.
By enabling remote-JITing for MCJIT and RuntimeDyld-based ORC clients,
EPCGenericRTDyldMemoryManager allows us to deprecate older remote-JITing
support, including OrcTargetClient/Server, OrcRPCExecutorProcessControl, and the
Orc RPC system itself. These will be removed in future patches.
Removing the 'ess' suffix improves the ergonomics without sacrificing clarity.
Since this class is likely to be used more frequently in the future it's worth
some short term pain to fix this now.
EPCGenericDylibManager provides an interface for loading dylibs and looking up
symbols in the executor, implemented using EPC-calls to functions in the
executor.
SimpleExecutorDylibManager is an executor-side service that provides the
functions used by EPCGenericDylibManager.
SimpleRemoteEPC is updated to use an EPCGenericDylibManager instance to
implement the ExecutorProcessControl loadDylib and lookup methods. In a future
commit these methods will be removed, and clients updated to use
EPCGenericDylibManagers directly.
This should have been included with ExecutorBootstrapService in 78b083dbb7,
but was accidentally left out. It give services a chance to release any
resources that they have acquired.
Finalization and deallocation actions are a key part of the upcoming
JITLinkMemoryManager redesign: They generalize the existing finalization and
deallocate concepts (basically "copy-and-mprotect", and "munmap") to include
support for arbitrary registration and deregistration of parts of JIT linked
code. This allows us to register and deregister eh-frames, TLV sections,
language metadata, etc. using regular memory management calls with no additional
IPC/RPC overhead, which should both improve JIT performance and simplify
interactions between ORC and the ORC runtime.
The SimpleExecutorMemoryManager class provides executor-side support for memory
management operations, including finalization and deallocation actions.
This support is being added in advance of the rest of the memory manager
redesign as it will simplify the introduction of an EPC based
RuntimeDyld::MemoryManager (since eh-frame registration/deregistration will be
expressible as actions). The new RuntimeDyld::MemoryManager will in turn allow
us to remove older remote allocators that are blocking the rest of the memory
manager changes.
This is a small first step towards reorganization of the ORC libraries:
Declarations for types and function names (as strings) to be found in the
"ORC runtime bootstrap" set are moved into OrcRTBridge.h / OrcRTBridge.cpp.
The current implementation of the "ORC runtime bootstrap" functions is moved
into OrcRTBootstrap.h and OrcRTBootstrap.cpp. It is likely that this code will
eventually be moved into ORT-RT proper (in compiler RT).
The immediate goal of this change is to make these bootstrap functions usable
for clients other than SimpleRemoteEPC/SimpleRemoteEPCServer. The first planned
client is a new RuntimeDyld::MemoryManager that will run over EPC, which will
allow us to remove the old OrcRemoteTarget code.
This reapplies bb27e45643 (SimpleRemoteEPC
support) and 2269a941a4 (#include <mutex>
fix) with further fixes to support building with LLVM_ENABLE_THREADS=Off.
This reverts commit 5629afea91 ("[ORC] Add missing
include."), and bb27e45643 ("[ORC] Add
SimpleRemoteEPC: ExecutorProcessControl over SPS + abstract transport.").
The SimpleRemoteEPC patch currently assumes availability of threads, and needs
to be rewritten with LLVM_ENABLE_THREADS guards.
SimpleRemoteEPC is an ExecutorProcessControl implementation (with corresponding
new server class) that uses ORC SimplePackedSerialization (SPS) to serialize and
deserialize EPC-messages to/from byte-buffers. The byte-buffers are sent and
received via a new SimpleRemoteEPCTransport interface that can be implemented to
run SimpleRemoteEPC over whatever underlying transport system (IPC, RPC, network
sockets, etc.) best suits your use case.
The SimpleRemoteEPCServer class provides executor-side support. It uses a
customizable SimpleRemoteEPCServer::Dispatcher object to dispatch wrapper
function calls to prevent the RPC thread from being blocked (a problem in some
earlier remote-JIT server implementations). Almost all functionality (beyond the
bare basics needed to bootstrap) is implemented as wrapper functions to keep the
implementation simple and uniform.
Compared to previous remote JIT utilities (OrcRemoteTarget*,
OrcRPCExecutorProcessControl), more consideration has been given to
disconnection and error handling behavior: Graceful disconnection is now always
initiated by the ORC side of the connection, and failure at either end (or in
the transport) will result in Errors being delivered to both ends to enable
controlled tear-down of the JIT and Executor (in the Executor's case this means
"as controlled as the JIT'd code allows").
The introduction of SimpleRemoteEPC will allow us to remove other remote-JIT
support from ORC (including the legacy OrcRemoteTarget* code used by lli, and
the OrcRPCExecutorProcessControl and OrcRPCEPCServer classes), and then remove
ORC RPC itself.
The llvm-jitlink and llvm-jitlink-executor tools have been updated to use
SimpleRemoteEPC over file descriptors. Future commits will move lli and other
tools and example code to this system, and remove ORC RPC.
This was already the case, but the recent change (957334382c) altered
the behavior on some of our bots where __unw_add_dynamic_fde is not
found. This restores the prior behavior on Darwin while also retaining
the new behavior from that change.
libgcc and libunwind have different flavours of __register_frame. Both
flavours are already correctly handled, except that the code to handle
the libunwind flavour is guarded by __APPLE__. This change uses the
presence of __unw_add_dynamic_fde in libunwind instead to detect whether
libunwind is used, rather than hardcoding it as Apple vs. non-Apple.
Fixes PR44074.
Thanks to Albert Jin <albert.jin@gmail.com> and Chris Schafmeister
<chris.schaf@verizon.net> for identifying the problem.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D106129
Some files still contained the old University of Illinois Open Source
Licence header. This patch replaces that with the Apache 2 with LLVM
Exception licence.
Differential Revision: https://reviews.llvm.org/D107528
Replace the existing WrapperFunctionResult type in
llvm/include/ExecutionEngine/Orc/Shared/TargetProcessControlTypes.h with a
version adapted from the ORC runtime's implementation.
Also introduce the SimplePackedSerialization scheme (also adapted from the ORC
runtime's implementation) for wrapper functions to avoid manual serialization
and deserialization for calls to runtime functions involving common types.
Add a new ObjectLinkingLayer plugin `DebugObjectManagerPlugin` and infrastructure to handle creation of `DebugObject`s as well as their registration in OrcTargetProcess. The current implementation only covers ELF on x86-64, but the infrastructure is not limited to that.
The journey starts with a new `LinkGraph` / `JITLinkContext` pair being created for a `MaterializationResponsibility` in ORC's `ObjectLinkingLayer`. It sends a `notifyMaterializing()` notification, which is forwarded to all registered plugins. The `DebugObjectManagerPlugin` aims to create a `DebugObject` form the provided target triple and object buffer. (Future implementations might create `DebugObject`s from a `LinkGraph` in other ways.) On success it will track it as the pending `DebugObject` for the `MaterializationResponsibility`.
This patch only implements the `ELFDebugObject` for `x86-64` targets. It follows the RuntimeDyld approach for debug object setup: it captures a copy of the input object, parses all section headers and prepares to patch their load-address fields with their final addresses in target memory. It instructs the plugin to report the section load-addresses once they are available. The plugin overrides `modifyPassConfig()` and installs a JITLink post-allocation pass to capture them.
Once JITLink emitted the finalized executable, the plugin emits and registers the `DebugObject`. For emission it requests a new `JITLinkMemoryManager::Allocation` with a single read-only segment, copies the object with patched section load-addresses over to working memory and triggers finalization to target memory. For registration, it notifies the `DebugObjectRegistrar` provided in the constructor and stores the previously pending`DebugObject` as registered for the corresponding MaterializationResponsibility.
The `DebugObjectRegistrar` registers the `DebugObject` with the target process. `llvm-jitlink` uses the `TPCDebugObjectRegistrar`, which calls `llvm_orc_registerJITLoaderGDBWrapper()` in the target process via `TargetProcessControl` to emit a `jit_code_entry` compatible with the GDB JIT interface [1]. So far the implementation only supports registration and no removal. It appears to me that it wouldn't raise any new design questions, so I left this as an addition for the near future.
[1] https://sourceware.org/gdb/current/onlinedocs/gdb/JIT-Interface.html
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D97335
LLVMBuild has been removed from the build system. However, three LLVMBuild.txt
files remain in the tree. This patch simply removes them.
llvm/lib/ExecutionEngine/Orc/TargetProcess/LLVMBuild.txt
llvm/tools/llvm-jitlink/llvm-jitlink-executor/LLVMBuild.txt
llvm/tools/llvm-profgen/LLVMBuild.txt
Differential Revision: https://reviews.llvm.org/D92693
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
implementation.
This patch aims to improve support for out-of-process JITing using OrcV2. It
introduces two new class templates, OrcRPCTargetProcessControlBase and
OrcRPCTPCServer, which together implement the TargetProcessControl API by
forwarding operations to an execution process via an Orc-RPC Endpoint. These
utilities are used to implement out-of-process JITing from llvm-jitlink to
a new llvm-jitlink-executor tool.
This patch also breaks the OrcJIT library into three parts:
-- OrcTargetProcess: Contains code needed by the JIT execution process.
-- OrcShared: Contains code needed by the JIT execution and compiler
processes
-- OrcJIT: Everything else.
This break-up allows JIT executor processes to link against OrcTargetProcess
and OrcShared only, without having to link in all of OrcJIT. Clients executing
JIT'd code in-process should start linking against OrcTargetProcess as well as
OrcJIT.
In the near future these changes will enable:
-- Removal of the OrcRemoteTargetClient/OrcRemoteTargetServer class templates
which provided similar functionality in OrcV1.
-- Restoration of Chapter 5 of the Building-A-JIT tutorial series, which will
serve as a simple usage example for these APIs.
-- Implementation of lazy, cross-target compilation in lli's -jit-kind=orc-lazy
mode.