Note that SystemZMnemonicSpellCheck is defined in
SystemZGenAsmMatcher.inc, which SystemZAsmParser.cpp includes.
Identified with readability-redundant-declaration.
- This patch adds in the GOFFMCAsmInfo interfaces for the z/OS target.
- This patch decouples the previously existing SystemZMCAsmInfo interface for the ELF target and the z/OS target.
- This patch also removes a small test in the SystemZAsmLexerTest.cpp. The reason for this is because, the test is set up for the s390x-ibm-linux (SystemZ ELF triple), and the test checks a function which is overridden only for the z/OS target. The reason we can't change the test to use a z/OS triple outright is because there is still missing support which prevents the successful running of a test (assert in AsmParser.cpp due to missing GOFFAsmParser support)
Reviewed By: uweigand, abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D110077
This patch changes hard-coded usages of SystemZ::R15D with calls to the getStackPointerRegister function. Uses in the LowerCall function are avoided to avoid merge conflicts with an expected upcoming patch.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D109702
- This patch adds in the GOFF mangling support to the LLVM data layout string. A corresponding additional line has been added into the data layout section in the language reference documentation.
- Furthermore, this patch also sets the right data layout string for the z/OS target in the SystemZ backend.
Reviewed By: uweigand, Kai, abhina.sreeskantharajan, MaskRay
Differential Revision: https://reviews.llvm.org/D109362
The type legalizer has by default no method of doing this bitcast other than
storing and reloading the value from stack.
This patch implements a custom lowering of this operation using extractions
of subregs (z13 and earlier using FP128 register pairs), or of vector
elements (with 'vector enhancements 1' using VR128 FP registers).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D110346
This simplifies the API and addresses a FIXME in
TwoAddressInstructionPass::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D110229
Based off a discussion on D110100, we should be avoiding default CostKinds whenever possible.
This initial patch removes them from the 'inner' target implementation callbacks - these should only be used by the main TTI calls, so this should guarantee that we don't cause changes in CostKind by missing it in an inner call. This exposed a few missing arguments in getGEPCost and reduction cost calls that I've cleaned up.
Differential Revision: https://reviews.llvm.org/D110242
SystemZ adds the EXRL target instructions in the end of each file. This must
be done before debug info emission since that may end the text section, and
therefore this is now done in emitConstantPools() (instead of in
emitEndOfAsmFile).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D109513
The .machine directive can be used in assembly files to specify the ISA for
the instructions following it.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D109660
This patch adds class SystemZFrameLowering which is a SystemZ-specific class
detailing special registers used by calling conventions on the target.
SystemZELFFrameLowering and SystemZXPLINKFrameLowering implement this class
for ELF and XPLINK64 respectively. Previous functionality in SystemZFrameLowering
is moved to SystemZELFFrameLowering. SystemZXPLINKFrameLowering can then be
implemented in future patches.
Reviewed By: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D108777
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
The backend generally uses 64-bit immediates (e.g. what
MachineOperand::getImm() returns), so use that for analyzeCompare()
and optimizeCompareInst() as well. This avoids truncation for
targets that support immediates larger 32-bit. In particular, we
can avoid the bugprone value normalization hack in the AArch64
target.
This is a followup to D108076.
Differential Revision: https://reviews.llvm.org/D108875
This patch replaces the SpecialRegisters field with a unique_ptr instead of a raw pointer. This is better practice, and allows us to remove the definition of the dtor for the SystemZSubtarget class.
Reviewed By: uweigand, Kai
Differential Revision: https://reviews.llvm.org/D108639
I'm not sure this is the best way to approach this,
but the situation is rather not very detectable unless we explicitly call it out when refusing to advise to unroll.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107271
- This patch consists of the bare basic code needed in order to generate some assembly for the z/OS target.
- Only the .text and the .bss sections are added for now.
- The relevant MCSectionGOFF/Symbol interfaces have been added. This enables us to print out the GOFF machine code sections.
- This patch enables us to add simple lit tests wherever possible, and contribute to the testing coverage for the z/OS target
- Further improvements and additions will be made in future patches.
Reviewed By: tmatheson
Differential Revision: https://reviews.llvm.org/D106380
This patch adds support for the next-generation arch14
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Detection of arch14 as host processor.
- Assembler/disassembler support for new instructions.
- New LLVM intrinsics for certain new instructions.
- Support for low-level builtins mapped to new LLVM intrinsics.
- New high-level intrinsics in vecintrin.h.
- Indicate support by defining __VEC__ == 10304.
Note: No currently available Z system supports the arch14
architecture. Once new systems become available, the
official system name will be added as supported -march name.
Don't use a local MachineOperand copy in SystemZAsmPrinter::PrintAsmOperand()
and change the register as it may break the MRI tracking of register
uses. Use an MCOperand instead.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D105757
The odd register of a (128 bit) register pair is accessed with the 'N' code
with an inline assembly operand.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D105502
Benchmarking has shown that it is worthwhile to implement a variable length
memset of 0 with XC (exclusive or) like gcc does, instead of using a libcall.
This requires the use of the EXecute Relative Long (EXRL) instruction which
can now be done in a framework that can also be used with other target
instructions (not just XC).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D103865
Add support for the .reloc directive along the lines of
other back-ends.
This fixes a regression after https://reviews.llvm.org/D104080
was merged, since that patch presupposed support for .reloc.
- Currently, the emitting of labels in the parsePrimaryExpr function is case independent. It just takes the identifier and emits it.
- However, for HLASM the emitting of labels is case independent. We are emitting them in the upper case only, to enforce case independency. So we need to ensure that at the time of parsing the label we are emitting the upper case (in `parseAsHLASMLabel`), but also, when we are processing a PC-relative relocatable expression, we need to ensure we emit it in upper case (in `parsePrimaryExpr`)
- To achieve this a new MCAsmInfo attribute has been introduced which corresponding targets can override if needed.
Reviewed By: abhina.sreeskantharajan, uweigand
Differential Revision: https://reviews.llvm.org/D104715
Since this method can apply to cmpxchg operations, make sure it's clear
what value we're actually retrieving. This will help ensure we don't
accidentally ignore the failure ordering of cmpxchg in the future.
We could potentially introduce a getOrdering() method on AtomicSDNode
that asserts the operation isn't cmpxchg, but not sure that's
worthwhile.
Differential Revision: https://reviews.llvm.org/D103338
The implementation of subword atomics does not actually
guarantee the result is zero-extended, which now caused
build bot failures after https://reviews.llvm.org/D101342
was landed.
Support virtual, physical and tied i128 register operands in inline assembly.
i128 is on SystemZ not really supported and is not a legal type and generally
such a value will be split into two i64 parts. There are however some
instructions that require a pair of two GPR64 registers contained in the GR128
bit reg class, which is untyped.
For inline assmebly operands, it proved to be very cumbersome to first follow
the general behavior of splitting an i128 operand into two parts and then
later rebuild the INLINEASM MI to have one GR128 register. Instead, some
minor common code changes were made to SelectionDAGBUilder to only create one
GR128 register part to begin with. In particular:
- getNumRegisters() now has an optional parameter "RegisterVT" which is
passed by AddInlineAsmOperands() and GetRegistersForValue().
- The bitcasting in GetRegistersForValue is not performed if RegVT is
Untyped.
- The RC for a tied use in AddInlineAsmOperands() is now computed either from
the tied def (virtual register), or by getMinimalPhysRegClass() (physical
register).
- InstrEmitter.cpp:EmitCopyFromReg() has been fixed so that the register
class (DstRC) can also be computed for an illegal type.
In the SystemZ backend getNumRegisters(), splitValueIntoRegisterParts() and
joinRegisterPartsIntoValue() have been implemented to handle i128 operands.
Differential Revision: https://reviews.llvm.org/D100788
Review: Ulrich Weigand
- Currently, LLVM supports symbols of the name "token1@token2".
- "token2" is used to identify whether an appropriate symbol reference can be used for the symbol.
- Now, if the symbol reference couldn't be found, the AsmParser usually emits an error, unless the backend is configured to accept the "@" in a symbol name
- Thus, this patch aims to do that. It sets the `AllowAtInName` attribute in the SystemZ backend for the HLASM dialect.
- Setting this attribute ensures that, if a particular symbol reference is found, it uses that. If it doesn't, and there exists an "@" in the symbol name, it will use that instead of explicitly erroring out.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D103111
- Currently, before printing a label in MCSymbol.cpp (MCSymbol::print), the current code "validates" the label that is to be printed.
- If it fails the validation step, then it prints the label within double quotes.
- However, the validation is provided as a virtual function in MCAsmInfo.h (i.e. isAcceptableChar() function). So we can override this for the AD_HLASM dialect in SystemZMCAsmInfo.cpp.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D103091
- This patch (is one in a series of patches) which introduces HLASM Parser support (for the first parameter of inline asm statements) to LLVM ([[ https://lists.llvm.org/pipermail/llvm-dev/2021-January/147686.html | main RFC here ]])
- This patch in particular introduces HLASM Parser support for Z machine instructions.
- The approach taken here was to subclass `AsmParser`, and make various functions and variables as "protected" wherever appropriate.
- The `HLASMAsmParser` class overrides the `parseStatement` function. Two new private functions `parseAsHLASMLabel` and `parseAsMachineInstruction` are introduced as well.
The general syntax is laid out as follows (more information available in [[ https://www.ibm.com/support/knowledgecenter/SSENW6_1.6.0/com.ibm.hlasm.v1r6.asm/asmr1023.pdf | HLASM V1R6 Language Reference Manual ]] - Chapter 2 - Instruction Statement Format):
```
<TokA><spaces.*><TokB><spaces.*><TokC><spaces.*><TokD>
```
1. TokA is referred to as the Name Entry. This token is optional
2. TokB is referred to as the Operation Entry. This token is mandatory.
3. TokC is referred to as the Operand Entry. This token is mandatory
4. TokD is referred to as the Remarks Entry. This token is optional
- If TokA is provided, then we either parse TokA as a possible comment or as a label (Name Entry), Tok B as the Operation Entry and so on.
- If TokA is not provided (i.e. we have one or more spaces and then the first token), then we will parse the first token (i.e TokB) as a possible Z machine instruction, TokC as the operands to the Z machine instruction and TokD as a possible Remark field
- TokC (Operand Entry), no spaces are allowed between OperandEntries. If a space occurs it is classified as an error.
- TokD if provided is taken as is, and emitted as a comment.
The following additional approach was examined, but not taken:
- Adding custom private only functions to base AsmParser class, and only invoking them for z/OS. While this would eliminate the need for another child class, these private functions would be of non-use to every other target. Similarly, adding any pure virtual functions to the base MCAsmParser class and overriding them in AsmParser would also have the same disadvantage.
Testing:
- This patch doesn't have tests added with it, for the sole reason that MCStreamer Support and Object File support hasn't been added for the z/OS target (yet). Hence, it's not possible generate code outright for the z/OS target. They are in the process of being committed / process of being worked on.
- Any comments / feedback on how to combat this "lack of testing" due to other missing required features is appreciated.
Reviewed By: Kai, uweigand
Differential Revision: https://reviews.llvm.org/D98276
This patch adds the XPLINK64 calling convention to the SystemZ
backend. It specifies and implements the argument passing and
return value conventions.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D101010
This patch adds the abstract class SystemZCallingConventionRegisters
which is a SystemZ-specific class detailing special registers used
by calling conventions on the target. SystemZELFRegisters and
SystemZXPLINK64Registers implement this class for ELF and XPLINK64
respectively.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D102370
Expand 128 bit shifts instead of using a libcall.
This patch removes the 128 bit shift libcalls and thereby causes
ExpandShiftWithUnknownAmountBit() to be called.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D101993
In order to use __builtin_frame_address(0) with packed stack and no
backchain, the address of where the backchain would have been written is
returned (like GCC).
This address may either contain a saved register or be unused.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D101897
As pointed out in D101726, this function already exists in MathExtras.
It uses different types, but with the values used here I believe that
should not make a functional difference.
- This patch attempts to implement the location counter syntax (*) for the HLASM variant for PC-relative instructions.
- In the HLASM variant, for purely constant relocatable values, we expect a * token preceding it, with special support for " *" which is parsed as "<pc-rel-insn 0>"
- For combinations of absolute values and relocatable values, we don't expect the "*" preceding the token.
When you have a " * " what’s accepted is:
```
*<space>.*{.*} -> <pc-rel-insn> 0
*[+|-][constant-value] -> <pc-rel-insn> [+|-]constant-value
```
When you don’t have a " * " what’s accepted is:
```
brasl 1,func is allowed (MCSymbolRef type)
brasl 1,func+4 is allowed (MCBinary type)
brasl 1,4+func is allowed (MCBinary type)
brasl 1,-4+func is allowed (MCBinary type)
brasl 1,func-4 is allowed (MCBinary type)
brasl 1,*func is not allowed (* cannot be used for non-MCConstantExprs)
brasl 1,*+func is not allowed (* cannot be used for non-MCConstantExprs)
brasl 1,*+func+4 is not allowed (* cannot be used for non-MCConstantExprs)
brasl 1,*+4+func is not allowed (* cannot be used for non-MCConstantExprs)
brasl 1,*-4+8+func is not allowed (* cannot be used for non-MCConstantExprs)
```
Reviewed By: Kai
Differential Revision: https://reviews.llvm.org/D100987
- Previously, https://reviews.llvm.org/D101308 removed prefixes from register while printing them out. This was especially needed for inline asm statements which used input/output operands.
- However, the backend SystemZAsmParser, accepts both prefixed registers and prefix-less registers as part of its implementation
- This patch aims to change that by ensuring that prefixed registers are only allowed for the ATT dialect.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D101665
Added an extra analysis for better choosing of shuffle kind in
getShuffleCost functions for better cost estimation if mask was
provided.
Differential Revision: https://reviews.llvm.org/D100865
Added an extra analysis for better choosing of shuffle kind in
getShuffleCost functions for better cost estimation if mask was
provided.
Differential Revision: https://reviews.llvm.org/D100865
- Currently, the "." (Dot) character, when not identifying an Identifier or a Constant, refers to the current PC (Program Counter)
- However, in z/OS, for the HLASM dialect, it strictly accepts only the "*" as the current PC (Support for this will be put up in a follow-up patch)
- The changes in this patch allow individual platforms to choose whether they would like to use the "." (Dot) character as a marker for the current PC or not.
- It is achieved by introducing a new field in MCAsmInfo.h called `DotIsPC` (similar to `DollarIsPC`)
Reviewed By: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D100975
- Previously, https://reviews.llvm.org/D99889 changed the framework in the AsmLexer to treat special tokens, if they occur at the start of the string, as Identifiers.
- These are used by the MASM Parser implementation in LLVM, and we can extend some of the changes made in the previous patch to SystemZ.
- In SystemZ, the special "tokens" referred to here are "_", "$", "@", "#". [_|$|@|#] are already supported as "part" of an Identifier.
- The changes in this patch ensure that these special tokens, when they occur at the start of the Identifier, are treated as Identifiers.
Reviewed By: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D100959
- This patch is the first part in enforcing prefix-less registers for the HLASM dialect in z/OS
- This patch removes the "%[r|f|v]" prefix while printing registers
- To achieve this, the `AssemblerDialect` field of MAI was used
- There is also a bit of refactoring done to ensure code repetition is reduced.
- Currently the LLVM assembler for SystemZ/z/OS accepts both prefixed registers and prefix-less registers. A subsequent follow-up patch will restrict the SystemZAsmParser to only accept prefix-less registers.
Crediting @kianm as an author as well.
Reviewed By: uweigand, abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D101308
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299