D104143 introduced canonical value numbering between regions, which allows for the easy identification of items across a region, eliminating the need in the outliner to create parallel lists of instructions for each region, and replace output values in a less convoluted way.
Additionally, in a future commit, the output values will not necessarily be recorded values from the region itself, it could be a combination value where the actual value being output is a PHINode instead. This new method allows us to handle the replacement of the output value to the stored value with the corresponding item in the same place for both normal output values, and PHINode outputs instead of handling the different types of outputs in different locations.
Reviewers: paquette, roelofs
Differential Revision: https://reviews.llvm.org/D108656
When we start outlining across branches, there is the possibility that we will have two different blocks with different output locations, or a single branch that goes to two blocks outside of the region that is being outlined. While the CodeExtractor provides most of the mechanisms by using the return value of the extracted function as the input to a switch statement to correctly branch to the correct location, we need special handling for different output schemas to each location.
This is done by repeating the existing storing scheme for each different exit block. We have a map from the return values used, to the basic block that is used to store the outputs for that particular exit block within the outlined function. Then if needed, we create a switch statement for each return block to branch to the correct set of stored outputs.
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106993
Using the similarity found from the IRSimilarity Identifier, we take regions with structural similarity, and deduplicate them into a separate function. The Code Extractor is able to provide most of this functionality.
For simplicity, we start by only outlining regions with a single entry and single exit branch, this reduces the complexity in handling phi nodes outside the region, and handling many sets of outputs for each of the different exit blocks.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D106990
The current IRSimilarityIdentifier does not try to find similarity across blocks, this patch provides a mechanism to compare two branches against one another, to find similarity across basic blocks, rather than just within them.
This adds a step in the similarity identification process that labels all of the basic blocks so that we can identify the relative branching locations. Within an IRSimilarityCandidate we use these relative locations to determine whether if the branching to other relative locations in the same region is the same between branches. If they are, we consider them similar.
We do not consider the relative location of the branch if the target branch is outside of the region. In this case, both branches must exit to a location outside the region, but the exact relative location does not matter.
Reviewers: paquette, yroux
Differential Revision: https://reviews.llvm.org/D106989
Currently, the IROutliner uses a simple metric to outline the largest amount
of IR possible to outline first if it fits the cost model. This is model
loses out on smaller blocks of code that have higher reductions in cost that
are contained within larger blocks of IR.
This reverses the order, where we calculate all of the costs first, and then
reorder and extract items based on the calculated results.
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106440
Occasionally instructions are between the last instruction in a region,
and the following instruction as identified by the Candidate. This
adds an extra check right before splitting a candidate that excludes the region from being split/checked for outlining to remove errors.
Tests Added:
Tranforms/IROuutliner/outlining-extra-bitcasts.ll
Reviewer: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D104142
When the initial relationship between two pairs of values between
similar sections is ambiguous to commutativity, arguments to the
outlined functions can be passed in such that the order is incorrect,
causing miscompilations. This adds a canonical mapping to each
similarity section, so that we can maintain the relationship of global
value numbering from one section to another.
Added Tests:
Transforms/IROutliner/outlining-commutative-operands-opposite-order.ll
unittests/Analysis/IRSimilarityIdentifierTest.cpp - IRSimilarityCandidate:CanonicalNumbering
Reviewers: jroelofs, jpaquette, yroux
Differential Revision: https://reviews.llvm.org/D104143
This adds support for functions outlined by the IR Outliner to be
recognized by the debugger. The expected behavior is that it will
skip over the instructions included in that section. This is due to the
fact that we can not say which of the original locations the
instructions originated from.
These functions will show up in the call stack, but you cannot step
through them.
Reviewers: paquette, vsk, djtodoro
Differential Revision: https://reviews.llvm.org/D87302
In commit 700d2417d8 the CodeExtractor
was updated so that bitcasts that have lifetime markers that beginning
outside of the region are deduplicated outside the region and are not
used as an output. This caused a discrepancy in the IROutliner, where
in these cases there were arguments added to the aggregate function
that were not needed causing assertion errors.
The IROutliner queries the CodeExtractor twice to determine the inputs
and outputs, before and after `findAllocas` is called with the same
ValueSet for the outputs causing the duplication. This has been fixed
with a dummy ValueSet for the first call.
However, the additional bitcasts prevent us from using the same
similarity relationships that were previously defined by the
IR Similarity Analysis Pass. In these cases, we check whether the
initial version of the region being analyzed for outlining is still the
same as it was previously. If it is not, i.e. because of the additional
bitcast instructions from the CodeExtractor, we discard the region.
Reviewers: yroux
Differential Revision: https://reviews.llvm.org/D94303
When combining extracted functions, they may have different function
attributes. We want to make sure that we do not make any assumptions,
or lose any information. This attempts to make sure that we consolidate
function attributes to their most general case.
Tests:
llvm/test/Transforms/IROutliner/outlining-compatible-and-attribute-transfer.ll
llvm/test/Transforms/IROutliner/outlining-compatible-or-attribute-transfer.ll
Reviewers: jdoefert, paquette
Differential Revision: https://reviews.llvm.org/D87301
There are functions that the linker is able to automatically
deduplicate, we do not outline from these functions by default. This
allows for outlining from those functions.
Tests:
llvm/test/Transforms/IROutliner/outlining-odr.ll
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87309
Since some values can be swift errors, we need to make sure that we
correctly propagate the parameter attributes.
Tests found at:
llvm/test/Transforms/IROutliner/outlining-swift-error.ll
Reviewers: jroelofs, paquette
Recommit of: 71867ed5e6
Differential Revision: https://reviews.llvm.org/D87742
This prints OptRemarks at each location where a decision is made to not
outline, or to outline a specific section for the IROutliner pass.
Test:
llvm/test/Transforms/IROutliner/opt-remarks.ll
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87300
This adds a cost model that takes into account the total number of
machine instructions to be removed from each region, the number of
instructions added by adding a new function with a set of instructions,
and the instructions added by handling arguments.
Tests not adding flags:
llvm/test/Transforms/IROutliner/outlining-cost-model.ll
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87299
Many of the sets of output stores will be the same. When a block is
created, we check if there is an output block with the same set of store
instructions. If there is, we map the output block of the region back
to the block, so that the extra argument controlling the switch
statement can be set to the appropriate block value.
Tests:
- llvm/test/Transforms/IROutliner/outlining-same-output-blocks.ll
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87298
Certain regions can have values introduced inside the region that are
used outside of the region. These may not be the same for each similar
region, so we must create one over arching set of arguments for the
consolidated function.
We do this by iterating over the outputs for each extracted function,
and creating as many different arguments to encapsulate the different
outputs sets. For each output set, we create a different block with the
necessary stores from the value to the output register. There is then
one switch statement, controlled by an argument to the function, to
differentiate which block to use.
Changed Tests for consistency:
llvm/test/Transforms/IROutliner/extraction.ll
llvm/test/Transforms/IROutliner/illegal-assumes.ll
llvm/test/Transforms/IROutliner/illegal-memcpy.ll
llvm/test/Transforms/IROutliner/illegal-memmove.ll
llvm/test/Transforms/IROutliner/illegal-vaarg.ll
Tests to test new functionality:
llvm/test/Transforms/IROutliner/outlining-different-output-blocks.ll
llvm/test/Transforms/IROutliner/outlining-remapped-outputs.ll
llvm/test/Transforms/IROutliner/outlining-same-output-blocks.ll
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87296
When there are constants that have the same structural location, but not
the same value, between different regions, we cannot simply outline the
region. Instead, we find the constants that are not the same in each
location, and promote them to arguments to be passed into the respective
functions. At each call site, we pass the constant in as an argument
regardless of type.
Added/Edited Tests:
llvm/test/Transforms/IROutliner/outlining-constants-vs-registers.ll
llvm/test/Transforms/IROutliner/outlining-different-constants.ll
llvm/test/Transforms/IROutliner/outlining-different-globals.ll
Reviewers: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D87294
Extracted regions can have both inputs and outputs. In addition, the
CodeExtractor removes inputs that are only used in llvm.assumes, and
sunken allocas (values are used entirely in the extracted region as
denoted by lifetime intrinsics). We also cannot combine sections that
have different constants in the same structural location, and these
constants will have to elevated to argument. This patch deduplicates
extracted functions that only have inputs and non of the special cases.
We test that correctly deduplicate in:
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D86978
Extracted regions can have both inputs and outputs. In addition, the
CodeExtractor removes inputs that are only used in llvm.assumes, and
sunken allocas (values are used entirely in the extracted region as
denoted by lifetime intrinsics). We also cannot combine sections that
have different constants in the same structural location, and these
constants will have to elevated to argument. This patch deduplicates
extracted functions that only have inputs and non of the special cases.
We test that correctly deduplicate in:
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
inputs.
Extracted regions can have both inputs and outputs. In addition, the
CodeExtractor removes inputs that are only used in llvm.assumes, and
sunken allocas (values are used entirely in the extracted region as
denoted by lifetime intrinsics). We also cannot combine sections that
have different constants in the same structural location, and these
constants will have to elevated to argument. This patch limits the
extracted regions to those that only require inputs, and do not have any
other special cases.
We test that we do not outline the wrong constants in:
test/Transforms/IROutliner/outliner-different-constants.ll
test/Transforms/IROutliner/outliner-different-globals.ll
test/Transforms/IROutliner/outliner-constant-vs-registers.ll
We test that correctly outline in:
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
Reviewers: paquette, plofti
Differential Revision: https://reviews.llvm.org/D86977
This adds a custom InstVisitor to return false on instructions that
should not be allowed to be outlined. These match the illegal
instructions in the IRInstructionMapper with exception of the addition
of the llvm.assume intrinsic.
Tests all the tests marked: illegal-*-.ll with a test for each kind of
instruction that has been marked as illegal.
Reviewers: jroelofs, paquette
Differential Revisions: https://reviews.llvm.org/D86976
Extracting the similar regions is the first step in the IROutliner.
Using the IRSimilarityIdentifier, we collect the SimilarityGroups and
sort them by how many instructions will be removed. Each
IRSimilarityCandidate is used to define an OutlinableRegion. Each
region is ordered by their occurrence in the Module and the regions that
are not compatible with previously outlined regions are discarded.
Each region is then extracted with the CodeExtractor into its own
function.
We test that correctly extract in:
test/Transforms/IROutliner/extraction.ll
test/Transforms/IROutliner/address-taken.ll
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
Recommit of bf899e8913 fixing memory
leaks.
Reviewers: paquette, jroelofs, yroux
Differential Revision: https://reviews.llvm.org/D86975
Reverting commit due to address sanitizer errors.
> Extracting the similar regions is the first step in the IROutliner.
>
> Using the IRSimilarityIdentifier, we collect the SimilarityGroups and
> sort them by how many instructions will be removed. Each
> IRSimilarityCandidate is used to define an OutlinableRegion. Each
> region is ordered by their occurrence in the Module and the regions that
> are not compatible with previously outlined regions are discarded.
>
> Each region is then extracted with the CodeExtractor into its own
> function.
>
> We test that correctly extract in:
> test/Transforms/IROutliner/extraction.ll
> test/Transforms/IROutliner/address-taken.ll
> test/Transforms/IROutliner/outlining-same-globals.ll
> test/Transforms/IROutliner/outlining-same-constants.ll
> test/Transforms/IROutliner/outlining-different-structure.ll
>
> Reviewers: paquette, jroelofs, yroux
>
> Differential Revision: https://reviews.llvm.org/D86975
This reverts commit bf899e8913.
Extracting the similar regions is the first step in the IROutliner.
Using the IRSimilarityIdentifier, we collect the SimilarityGroups and
sort them by how many instructions will be removed. Each
IRSimilarityCandidate is used to define an OutlinableRegion. Each
region is ordered by their occurrence in the Module and the regions that
are not compatible with previously outlined regions are discarded.
Each region is then extracted with the CodeExtractor into its own
function.
We test that correctly extract in:
test/Transforms/IROutliner/extraction.ll
test/Transforms/IROutliner/address-taken.ll
test/Transforms/IROutliner/outlining-same-globals.ll
test/Transforms/IROutliner/outlining-same-constants.ll
test/Transforms/IROutliner/outlining-different-structure.ll
Reviewers: paquette, jroelofs, yroux
Differential Revision: https://reviews.llvm.org/D86975