In situations where the coroutine function is not split we can just
replace the async.resume by null.
rdar://82591919
Differential Revision: https://reviews.llvm.org/D110191
The expansion for these was updated in https://reviews.llvm.org/D47927 but the cost model was not adjusted.
I believe the cost model was also incorrect for the old expansion.
The expansion prior to D47927 used 3 icmps using LHS, RHS, and Result
to calculate theirs signs. Then 2 icmps to compare the signs. Followed
by an And. The previous cost model was using 3 icmps and 2 selects.
Digging back through git blame, those 2 selects in the cost model used to
be 2 icmps, but were changed in https://reviews.llvm.org/D90681
Differential Revision: https://reviews.llvm.org/D110739
This patch improves the effectiveness of BDCE's debug info salvaging
by processing the instructions in reverse order and delaying
dropAllReferences until after debug info salvaging. This allows
salvaging of entire chains of deleted instructions!
Previously we would remove all references from an instruction, which
would make it impossible to use that instruction to salvage a later
instruction in the instruction stream, because its operands were
already removed.
This reapplies the previous patch with a fix for a use-after-free.
Differential Revision: https://reviews.llvm.org/D110568
This is analogous to D86156 (which preserves "lossy" BFI in loop
passes). Lossy means that the analysis preserved may not be up to date
with regards to new blocks that are added in loop passes, but BPI will
not contain stale pointers to basic blocks that are deleted by the loop
passes.
This is achieved through BasicBlockCallbackVH in BPI, which calls
eraseBlock that updates the data structures in BPI whenever a basic
block is deleted.
This patch does not have any changes in the upstream pipeline, since
none of the loop passes in the pipeline use BPI currently.
However, since BPI wasn't previously preserved in loop passes, the loop
predication pass was invoking BPI *on the entire
function* every time it ran in an LPM. This caused massive compile time
in our downstream LPM invocation which contained loop predication.
See updated test with an invocation of a loop-pipeline containing loop
predication and -debug-pass turned ON.
Reviewed-By: asbirlea, modimo
Differential Revision: https://reviews.llvm.org/D110438
This updates transform test cases for
ADCE
AddDiscriminators
AggressiveInstCombine
AlignmentFromAssumptions
ArgumentPromotion
BDCE
CalledValuePropagation
DCE
Reg2Mem
WholeProgramDevirt
to use the -passes syntax when specifying the pipeline.
Given that LLVM_ENABLE_NEW_PASS_MANAGER isn't set to off (which is
a deprecated feature) the updated test cases already used the new
pass manager, but they were using the legacy syntax when specifying
the passes to run. This patch can be seen as a step toward deprecating
that interface.
This patch also removes some redundant RUN lines. Here I am
referring to test cases that had multiple RUN lines verifying both
the legacy "-passname" syntax and the new "-passes=passname" syntax.
Since we switched the default pass manager to "new PM" both RUN lines
have verified the new PM version of the pass (more or less wasting
time running the same test twice), unless LLVM_ENABLE_NEW_PASS_MANAGER
is set to "off". It is assumed that it is enough to run these tests
with the new pass manager now.
Differential Revision: https://reviews.llvm.org/D108472
It can happen that after widening of the IV, flattening may not be possible,
e.g. when it is deemed unprofitable. We were not properly checking this, which
resulted in flattening being applied when it shouldn't, also leading to
incorrect results (miscompilation).
This should fix PR51980 (https://bugs.llvm.org/show_bug.cgi?id=51980)
Differential Revision: https://reviews.llvm.org/D110712
The test is from https://llvm.org/PR51351.
There are 2 related logic bugs from over-generalizing "lshr" to "any shr",
but I'm not sure how to expose the difference for "MaskC" because instsimplify
already folds ashr of -1.
I'll extend instsimplify to catch the MaskD pattern as a follow-up, but this
patch should be enough to avoid the miscompile.
getScalarizationOverhead() results in a somewhat better cost estimation than counting the insertion/extraction costs directly. Notably, this is still overestimating the costs.
Original Patch by: @lebedev.ri (Roman Lebedev)
Differential Revision: https://reviews.llvm.org/D110713
This fixes an issue exposed by D71539, where IndVarSimplify tries
to access an invalid cached SCEV expression after making changes to the
underlying PHI instruction earlier.
When changing the incoming value of a PHI, forget the cached SCEV for
the PHI.
This is NFCI (no-functional-change-intended), but there
are benign diffs possible with commutable ops as seen in
the test diffs.
The transforms were repeated for the commutative opcodes,
but that should not be necessary if we canonicalize the
patterns that we're matching. If both operands of the
binop match, that should get folded eventually.
The transform that starts with a mask op seems to
over-constrain the use checks, so that could be a
potential enhancement.
This reverts commit f6954bf804.
This breaks the test-suite O3 build:
/home/nikic/llvm-test-suite/build-O3/tools/timeit --summary Bitcode/Benchmarks/Halide/local_laplacian/CMakeFiles/halide_local_laplacian.dir/local_laplacian.bc.o.time /home/nikic/llvm-project/build/bin/clang++ -DNDEBUG -O3 -w -Werror=date-time -save-stats=obj -save-stats=obj -std=c++11 -MD -MT Bitcode/Benchmarks/Halide/local_laplacian/CMakeFiles/halide_local_laplacian.dir/local_laplacian.bc.o -MF Bitcode/Benchmarks/Halide/local_laplacian/CMakeFiles/halide_local_laplacian.dir/local_laplacian.bc.o.d -o Bitcode/Benchmarks/Halide/local_laplacian/CMakeFiles/halide_local_laplacian.dir/local_laplacian.bc.o -c ../Bitcode/Benchmarks/Halide/local_laplacian/local_laplacian.bc
While deleting: i64 %
Use still stuck around after Def is destroyed: %12620 = mul i64 %12619, <badref>
clang++: /home/nikic/llvm-project/llvm/lib/IR/Value.cpp:103: llvm::Value::~Value(): Assertion `materialized_use_empty() && "Uses remain when a value is destroyed!"' failed.
This patch improves the effectiveness of BDCE's debug info salvaging
by processing the instructions in reverse order and delaying
dropAllReferences until after debug info salvaging. This allows
salvaging of entire chains of deleted instructions!
Previously we would remove all references from an instruction, which
would make it impossible to use that instruction to salvage a later
instruction in the instruction stream, because its operands were
already removed.
Differential Revision: https://reviews.llvm.org/D110568
This patch improves the effectiveness of ADCE's debug info salvaging
by processing the instructions in reverse order and delaying
dropAllReferences until after debug info salvaging. This allows
salvaging of entire chains of deleted instructions!
Previously we would remove all references from an instruction, which
would make it impossible to use that instruction to salvage a later
instruction in the instruction stream, because its operands were
already removed.
Differential Revision: https://reviews.llvm.org/D110462
This patch enables debug info salvaging for truncating/extending ptr
int conversions. The testcase uncovered a bug in adce, which is
addressed separately.
rdar://80227769
Differential Revision: https://reviews.llvm.org/D110461
There are two sets of new/delete functions, one with Windows/MSVC
mangling and one with Itanium mangling. Mark one set or the other
as unavailable depending on the target.
Split the test malloc-free-delete.ll into three parts: malloc-free.dll
for the C API tests, new-delete-itanium.ll and new-delete-msvc.ll for
the target-specific new/delete tests.
Differential Revision: https://reviews.llvm.org/D110419
This commit is the InstCombine follow-up to the previous constant-folding
change that enables noticeable optimizations for CHERI-enabled targets.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D110247
I was looking at some missed optimizations in CHERI-enabled targets and
noticed that we weren't removing vtable indirection for calls via known
pointers-to-members. The underlying reason for this is that we represent
pointers-to-function-members as {i8 addrspace(200)*, i64} and generate the
constant offsets using (gep i8 null, <index>). We use a constant GEP here
since inttoptr should be avoided for CHERI capabilities. The pointer-to-member
call uses ptrtoint to extract the index, and due to this missing fold we can't
infer the actual value loaded from the vtable.
This is the initial constant folding change for this pattern, I will add
an InstCombine fold as a follow-up.
We could fold all inbounds GEP to null (and therefore the ptrtoint to
zero) since zero is the only valid offset for an inbounds GEP. If the
offset is not zero, that GEP is poison and therefore returning 0 is valid
(https://alive2.llvm.org/ce/z/Gzb5iH). However, Clang currently generates
inbounds GEPs on NULL for hand-written offsetof() expressions, so this
could lead to miscompilations.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D110245
Try to improve vectorization of the PHI nodes by trying to vectorize
similar instructions at the size of the widest possible vectors, then
aggregating with compatible type PHIs and trying to vectoriza again and
only if this failed, try smaller sizes of the vector factors for
compatible PHI nodes. This restores performance of several benchmarks
after tuning of the fp/int conversion instructions costs.
Differential Revision: https://reviews.llvm.org/D108740
In rG6a076fa9539e, a problem with updating the old/narrow phi nodes after IV
widening was introduced. If after widening of the IV the transformation is
*not* applied, the narrow phi node was incorrectly modified, which should only
happen if flattening happens. This can be seen in the added test widen-iv2.ll,
which incorrectly had 1 incoming value, but should have its original 2 incoming
values, which is now restored.
Differential Revision: https://reviews.llvm.org/D110234
We need more coverage for commuted and (un)signed preds to
verify that things behave as expected here. Currently, we
do not transform signed preds or non-inbounds geps.
The instruction extractelement/extractvalue are not required to
be scheduled since they only depend on the source vector/aggregate (with
constant indices), smae applies to the parent basic block checks.
Improves compile time and saves scheduling budget.
Differential Revision: https://reviews.llvm.org/D108703
ScalarizationResult's destructor makes sure ToFreeze is not ignored if
set. Currently, scalarizeLoadExtract has an early exit if the index is
not safe directly. But when it is SafeWithFreeze, we need to discard the
state first, otherwise we hit the assert in the destructor.
Fixes PR51992.
This reverts commit 8fdac7cb7a.
The issue causing the revert has been fixed a while ago in 60b852092c.
Original message:
Now that SCEVExpander can preserve LCSSA form,
we do not have to worry about LCSSA form when
trying to look through PHIs. SCEVExpander will take
care of inserting LCSSA PHI nodes as required.
This increases precision of the analysis in some cases.
Reviewed By: mkazantsev, bmahjour
Differential Revision: https://reviews.llvm.org/D71539
Precommit testcase for D110438. Since we do not preserve BPI in loop
pass manager, we are forced to compute BPI everytime Loop predication is
invoked.
The patch referenced changes that behaviour by preserving lossy BPI for
loop passes.
We see that it might otherwise do:
%10 = getelementptr {}**, <2 x {}***> %9, <2 x i32> <i32 10, i32 4>
%11 = bitcast <2 x {}***> %10 to <2 x i64*>
...
%27 = extractelement <2 x i64*> %11, i32 0
%28 = bitcast i64* %27 to <2 x i64>*
store <2 x i64> %22, <2 x i64>* %28, align 4, !tbaa !2
Which is an out-of-bounds store (the extractelement got offset 10
instead of offset 4 as intended). With the fix, we correctly generate
extractelement for i32 1 and generate correct code.
Differential Revision: https://reviews.llvm.org/D106613
This is another step towards trying to re-apply D110170
by eliminating conflicting transforms that cause infinite loops.
a47c8e40c7 was a previous patch in this direction.
The diffs here are mostly cosmetic, but intentional:
1. The existing code that would handle this pattern in FoldShiftByConstant()
is limited to 'shl' only now. The formatting change to IsLeftShift shows
that we could move several transforms into visitShl() directly for
efficiency because they are not common shift transforms.
2. The tests are regenerated to show new instruction names to prove that
we are getting (almost) identical logic results.
3. The one case where we differ ("trunc_sandwich_small_shift1") shows that
we now use a narrow 'and' instruction. Previously, we relied on another
transform to do that, but it is limited to legal types. That seems to
be a legacy constraint from when IR analysis and codegen were less robust.
https://alive2.llvm.org/ce/z/JxyGA4
declare void @llvm.assume(i1)
define i8 @src(i32 %x, i32 %c0, i8 %c1) {
; The sum of the shifts must not overflow the source width.
%z1 = zext i8 %c1 to i32
%sum = add i32 %c0, %z1
%ov = icmp ult i32 %sum, 32
call void @llvm.assume(i1 %ov)
%sh1 = lshr i32 %x, %c0
%tr = trunc i32 %sh1 to i8
%sh2 = lshr i8 %tr, %c1
ret i8 %sh2
}
define i8 @tgt(i32 %x, i32 %c0, i8 %c1) {
%z1 = zext i8 %c1 to i32
%sum = add i32 %c0, %z1
%maskc = lshr i8 -1, %c1
%s = lshr i32 %x, %sum
%t = trunc i32 %s to i8
%a = and i8 %t, %maskc
ret i8 %a
}
Function specialization was crashing on poison values and constexpr values.
The problem is that these values are not added to the solver, so it crashes
when a lookup is performed for these values. This fixes that by not
specialising on these values. For poison that is obvious, but for constexpr
this is a change in behaviour. Thus, in one way this is a bit of a stopgap, but
specialising on constexpr values wasn't done very intentionally, and need some
more work and tests if we wanted to support this.
As a follow up, we need to look if the solver should exit more gracefully and
return a "don't know", or that it should really support these constexprs.
This should fix PR51600 (https://bugs.llvm.org/show_bug.cgi?id=51600).
Differential Revision: https://reviews.llvm.org/D110529
This is another regression noted with the proposal to canonicalize
to the min/max intrinsics in D98152.
Here are Alive2 attempts to show correctness without specifying
exact constants:
https://alive2.llvm.org/ce/z/bvfCwh (smax)
https://alive2.llvm.org/ce/z/of7eqy (smin)
https://alive2.llvm.org/ce/z/2Xtxoh (umax)
https://alive2.llvm.org/ce/z/Rm4Ad8 (umin)
(if you comment out the assume and/or no-wrap, you should see failures)
The different output for the umin test is due to a fold added with
c4fc2cb5b2 :
// umin(x, 1) == zext(x != 0)
We probably want to adjust that, so it applies more generally
(umax --> sext or patterns where we can fold to select-of-constants).
Some folds that were ok when starting with cmp+select may increase
instruction count for the equivalent intrinsic, so we have to decide
if it's worth altering a min/max.
Differential Revision: https://reviews.llvm.org/D110038
This is a followup to D109844 (and alternative to D109907), which
integrates the new "earliest escape" tracking into AliasAnalysis.
This is done by replacing the pre-existing context-free capture
cache in AAQueryInfo with a replaceable (virtual) object with two
implementations: The SimpleCaptureInfo implements the previous
behavior (check whether object is captured at all), while
EarliestEscapeInfo implements the new behavior from DSE.
This combines the "earliest escape" analysis with the full power of
BasicAA: It subsumes the call handling from D109907, considers a
wider range of escape sources, and works with AA recursion. The
compile-time cost is slightly higher than with D109907.
Differential Revision: https://reviews.llvm.org/D110368
It is sufficient that the object has not been captured before the
load that produces the pointer we're loading. A capture after that
can not affect the already loaded pointer.
This is small part of D110368 applied separately.