A backedge-taken count doesn't refer to memory; returning a pointer type
is nonsense. So make sure we always return an integer.
The obvious way to do this would be to just convert the operands of the
icmp to integers, but that doesn't quite work out at the moment:
isLoopEntryGuardedByCond currently gets confused by ptrtoint operations.
So we perform the ptrtoint conversion late for lt/gt operations.
The test changes are mostly innocuous. The most interesting changes are
more complex SCEV expressions of the form "(-1 * (ptrtoint i8* %ptr to
i64)) + %ptr)". This is expected: we can't fold this to zero because we
need to preserve the pointer base.
The call to isLoopEntryGuardedByCond in howFarToZero is less precise
because of ptrtoint operations; this shows up in the function
pr46786_c26_char in ptrtoint.ll. Fixing it here would require more
complex refactoring. It should eventually be fixed by future
improvements to isImpliedCond.
See https://bugs.llvm.org/show_bug.cgi?id=46786 for context.
Differential Revision: https://reviews.llvm.org/D103656
This patch marks the induction increment of the main induction variable
of the vector loop as NUW when not folding the tail.
If the tail is not folded, we know that End - Start >= Step (either
statically or through the minimum iteration checks). We also know that both
Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
%Step == %End. Hence we must exit the loop before %IV + %Step unsigned
overflows and we can mark the induction increment as NUW.
This should make SCEV return more precise bounds for the created vector
loops, used by later optimizations, like late unrolling.
At the moment quite a few tests still need to be updated, but before
doing so I'd like to get initial feedback to make sure I am not missing
anything.
Note that this could probably be further improved by using information
from the original IV.
Attempt of modeling of the assumption in Alive2:
https://alive2.llvm.org/ce/z/H_DL_g
Part of a set of fixes required for PR50412.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D103255
This reverts commit 329aeb5db4,
and relands commit 61f006ac65.
This is a continuation of D89456.
As it was suggested there, now that SCEV models `PtrToInt`,
we can try to improve SCEV's pointer handling.
In particular, i believe, i will need this in the future
to further fix `SCEVAddExpr`operation type handling.
This removes special handling of `ConstantPointerNull`
from `ScalarEvolution::createSCEV()`, and add constant folding
into `ScalarEvolution::getPtrToIntExpr()`.
This way, `null` constants stay as such in SCEV's,
but gracefully become zero integers when asked.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D98147
This is a continuation of D89456.
As it was suggested there, now that SCEV models `PtrToInt`,
we can try to improve SCEV's pointer handling.
In particular, i believe, i will need this in the future
to further fix `SCEVAddExpr`operation type handling.
This removes special handling of `ConstantPointerNull`
from `ScalarEvolution::createSCEV()`, and add constant folding
into `ScalarEvolution::getPtrToIntExpr()`.
This way, `null` constants stay as such in SCEV's,
but gracefully become zero integers when asked.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D98147
These intrinsics, not the icmp+select are the canonical form nowadays,
so we might as well directly emit them.
This should not cause any regressions, but if it does,
then then they would needed to be fixed regardless.
Note that this doesn't deal with `SCEVExpander::isHighCostExpansion()`,
but that is a pessimization, not a correctness issue.
Additionally, the non-intrinsic form has issues with undef,
see https://reviews.llvm.org/D88287#2587863
This patch updates IRBuilder to create insertelement/shufflevector using poison as a placeholder.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93793
The initial step of the uniform-after-vectorization (lane-0 demanded only) analysis was very awkwardly written. It would revisit use list of each pointer operand of a widened load/store. As a result, it was in the worst case O(N^2) where N was the number of instructions in a loop, and had restricted operand Value types to reduce the size of use lists.
This patch replaces the original algorithm with one which is at most O(2N) in the number of instructions in the loop. (The key observation is that each use of a potentially interesting pointer is visited at most twice, once on first scan, once in the use list of *it's* operand. Only instructions within the loop have their uses scanned.)
In the process, we remove a restriction which required the operand of the uniform mem op to itself be an instruction. This allows detection of uniform mem ops involving global addresses.
Differential Revision: https://reviews.llvm.org/D92056
A uniform load is one which loads from a uniform address across all lanes. As currently implemented, we cost model such loads as if we did a single scalar load + a broadcast, but the actual lowering replicates the load once per lane.
This change tweaks the lowering to use the REPLICATE strategy by marking such loads (and the computation leading to their memory operand) as uniform after vectorization. This is a useful change in itself, but it's real purpose is to pave the way for a following change which will generalize our uniformity logic.
In review discussion, there was an issue raised with coupling cost modeling with the lowering strategy for uniform inputs. The discussion on that item remains unsettled and is pending larger architectural discussion. We decided to move forward with this patch as is, and revise as warranted once the bigger picture design questions are settled.
Differential Revision: https://reviews.llvm.org/D91398