The slab allocator is frequently used in -noexec tests where we want a
consistent memory layout. In this context we also want to set the effective
page size, rather than using the page size of the host process, since not all
systems use the same page size. The -slab-page-size option allows us to set
the page size for such tests.
The -slab-page-size option will also be honored in exec mode when using the
slab allocator, but will trigger an error if the requested size is not a
multiple of the actual process page size.
This option was motivated by test failures on a ppc64 bot that was returning
zero from sys::Process::getPageSize(), so it also contains a check for errors
and zero results from that function if the -slab-page-size option is absent.
Existing slab allocator tests will be updated to use this option in a follow-up
commit so that we can point the failing bot at this commit and observe errors
associated with sys::Process::getPageSize().
Finalization and deallocation actions are a key part of the upcoming
JITLinkMemoryManager redesign: They generalize the existing finalization and
deallocate concepts (basically "copy-and-mprotect", and "munmap") to include
support for arbitrary registration and deregistration of parts of JIT linked
code. This allows us to register and deregister eh-frames, TLV sections,
language metadata, etc. using regular memory management calls with no additional
IPC/RPC overhead, which should both improve JIT performance and simplify
interactions between ORC and the ORC runtime.
The SimpleExecutorMemoryManager class provides executor-side support for memory
management operations, including finalization and deallocation actions.
This support is being added in advance of the rest of the memory manager
redesign as it will simplify the introduction of an EPC based
RuntimeDyld::MemoryManager (since eh-frame registration/deregistration will be
expressible as actions). The new RuntimeDyld::MemoryManager will in turn allow
us to remove older remote allocators that are blocking the rest of the memory
manager changes.
This reapplies bb27e45643 (SimpleRemoteEPC
support) and 2269a941a4 (#include <mutex>
fix) with further fixes to support building with LLVM_ENABLE_THREADS=Off.
This reverts commit 5629afea91 ("[ORC] Add missing
include."), and bb27e45643 ("[ORC] Add
SimpleRemoteEPC: ExecutorProcessControl over SPS + abstract transport.").
The SimpleRemoteEPC patch currently assumes availability of threads, and needs
to be rewritten with LLVM_ENABLE_THREADS guards.
SimpleRemoteEPC is an ExecutorProcessControl implementation (with corresponding
new server class) that uses ORC SimplePackedSerialization (SPS) to serialize and
deserialize EPC-messages to/from byte-buffers. The byte-buffers are sent and
received via a new SimpleRemoteEPCTransport interface that can be implemented to
run SimpleRemoteEPC over whatever underlying transport system (IPC, RPC, network
sockets, etc.) best suits your use case.
The SimpleRemoteEPCServer class provides executor-side support. It uses a
customizable SimpleRemoteEPCServer::Dispatcher object to dispatch wrapper
function calls to prevent the RPC thread from being blocked (a problem in some
earlier remote-JIT server implementations). Almost all functionality (beyond the
bare basics needed to bootstrap) is implemented as wrapper functions to keep the
implementation simple and uniform.
Compared to previous remote JIT utilities (OrcRemoteTarget*,
OrcRPCExecutorProcessControl), more consideration has been given to
disconnection and error handling behavior: Graceful disconnection is now always
initiated by the ORC side of the connection, and failure at either end (or in
the transport) will result in Errors being delivered to both ends to enable
controlled tear-down of the JIT and Executor (in the Executor's case this means
"as controlled as the JIT'd code allows").
The introduction of SimpleRemoteEPC will allow us to remove other remote-JIT
support from ORC (including the legacy OrcRemoteTarget* code used by lli, and
the OrcRPCExecutorProcessControl and OrcRPCEPCServer classes), and then remove
ORC RPC itself.
The llvm-jitlink and llvm-jitlink-executor tools have been updated to use
SimpleRemoteEPC over file descriptors. Future commits will move lli and other
tools and example code to this system, and remove ORC RPC.
This change adds support to ORCv2 and the Orc runtime library for static
initializers, C++ static destructors, and exception handler registration for
ELF-based platforms, at present Linux and FreeBSD on x86_64. It is based on the
MachO platform and runtime support introduced in bb5f97e3ad.
Patch by Peter Housel. Thanks very much Peter!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D108081
Wrapper function call and dispatch handler helpers are moved to
ExecutionSession, and existing EPC-based tools are re-written to take an
ExecutionSession argument instead.
Requiring an ExecutorProcessControl instance simplifies existing EPC based
utilities (which only need to take an ES now), and should encourage more
utilities to use the EPC interface. It also simplifies process termination,
since the session can automatically call ExecutorProcessControl::disconnect
(previously this had to be done manually, and carefully ordered with the
rest of JIT tear-down to work correctly).
Adds support for MachO static initializers/deinitializers and eh-frame
registration via the ORC runtime.
This commit introduces cooperative support code into the ORC runtime and ORC
LLVM libraries (especially the MachOPlatform class) to support macho runtime
features for JIT'd code. This commit introduces support for static
initializers, static destructors (via cxa_atexit interposition), and eh-frame
registration. Near-future commits will add support for MachO native
thread-local variables, and language runtime registration (e.g. for Objective-C
and Swift).
The llvm-jitlink tool is updated to use the ORC runtime where available, and
regression tests for the new MachOPlatform support are added to compiler-rt.
Notable changes on the ORC runtime side:
1. The new macho_platform.h / macho_platform.cpp files contain the bulk of the
runtime-side support. This includes eh-frame registration; jit versions of
dlopen, dlsym, and dlclose; a cxa_atexit interpose to record static destructors,
and an '__orc_rt_macho_run_program' function that defines running a JIT'd MachO
program in terms of the jit- dlopen/dlsym/dlclose functions.
2. Replaces JITTargetAddress (and casting operations) with ExecutorAddress
(copied from LLVM) to improve type-safety of address management.
3. Adds serialization support for ExecutorAddress and unordered_map types to
the runtime-side Simple Packed Serialization code.
4. Adds orc-runtime regression tests to ensure that static initializers and
cxa-atexit interposes work as expected.
Notable changes on the LLVM side:
1. The MachOPlatform class is updated to:
1.1. Load the ORC runtime into the ExecutionSession.
1.2. Set up standard aliases for macho-specific runtime functions. E.g.
___cxa_atexit -> ___orc_rt_macho_cxa_atexit.
1.3. Install the MachOPlatformPlugin to scrape LinkGraphs for information
needed to support MachO features (e.g. eh-frames, mod-inits), and
communicate this information to the runtime.
1.4. Provide entry-points that the runtime can call to request initializers,
perform symbol lookup, and request deinitialiers (the latter is
implemented as an empty placeholder as macho object deinits are rarely
used).
1.5. Create a MachO header object for each JITDylib (defining the __mh_header
and __dso_handle symbols).
2. The llvm-jitlink tool (and llvm-jitlink-executor) are updated to use the
runtime when available.
3. A `lookupInitSymbolsAsync` method is added to the Platform base class. This
can be used to issue an async lookup for initializer symbols. The existing
`lookupInitSymbols` method is retained (the GenericIRPlatform code is still
using it), but is deprecated and will be removed soon.
4. JIT-dispatch support code is added to ExecutorProcessControl.
The JIT-dispatch system allows handlers in the JIT process to be associated with
'tag' symbols in the executor, and allows the executor to make remote procedure
calls back to the JIT process (via __orc_rt_jit_dispatch) using those tags.
The primary use case is ORC runtime code that needs to call bakc to handlers in
orc::Platform subclasses. E.g. __orc_rt_macho_jit_dlopen calling back to
MachOPlatform::rt_getInitializers using __orc_rt_macho_get_initializers_tag.
(The system is generic however, and could be used by non-runtime code).
The new ExecutorProcessControl::JITDispatchInfo struct provides the address
(in the executor) of the jit-dispatch function and a jit-dispatch context
object, and implementations of the dispatch function are added to
SelfExecutorProcessControl and OrcRPCExecutorProcessControl.
5. OrcRPCTPCServer is updated to support JIT-dispatch calls over ORC-RPC.
6. Serialization support for StringMap is added to the LLVM-side Simple Packed
Serialization code.
7. A JITLink::allocateBuffer operation is introduced to allocate writable memory
attached to the graph. This is used by the MachO header synthesis code, and will
be generically useful for other clients who want to create new graph content
from scratch.
This is a first step towards consistently using the term 'executor' for the
process that executes JIT'd code. I've opted for 'executor' as the preferred
term over 'target' as target is already heavily overloaded ("the target
machine for the executor" is much clearer than "the target machine for the
target").
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
This makes it possible for targets to define their own MCObjectFileInfo.
This MCObjectFileInfo is then used to determine things like section alignment.
This is a follow up to D101462 and prepares for the RISCV backend defining the
text section alignment depending on the enabled extensions.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101921
The system's network API is in libnetwork.so, so we explicitly need to link to
them on Haiku. This patch is similar to https://reviews.llvm.org/D97633.
Patch by Niels Reedijk. Thanks Niels!
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D98405
This untangles the MCContext and the MCObjectFileInfo. There is a circular
dependency between MCContext and MCObjectFileInfo. Currently this dependency
also exists during construction: You can't contruct a MOFI without a MCContext
without constructing the MCContext with a dummy version of that MOFI first.
This removes this dependency during construction. In a perfect world,
MCObjectFileInfo wouldn't depend on MCContext at all, but only be stored in the
MCContext, like other MC information. This is future work.
This also shifts/adds more information to the MCContext making it more
available to the different targets. Namely:
- TargetTriple
- ObjectFileType
- SubtargetInfo
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101462
CommandLine.h is indirectly included in ~50% of TUs when building
clang, and VirtualFileSystem.h is large.
(Already remarked by jhenderson on D70769.)
No behavior change.
Differential Revision: https://reviews.llvm.org/D100957
Adds utilities for creating anonymous pointers and jump stubs to x86_64.h. These
are used by the GOT and Stubs builder, but may also be used by pass writers who
want to create pointer stubs for indirection.
This patch also switches the underlying type for LinkGraph content from
StringRef to ArrayRef<char>. This avoids any confusion when working with buffers
that contain null bytes in the middle like, for example, a newly added null
pointer content array. ;)
Add diagnostic output for TCP connections on both sides, llvm-jitlink and llvm-jitlink-executor.
Port the executor to use getaddrinfo(3) as well. This makes the code more symmetric and seems to be the recommended way for implementing the server side.
Reviewed By: rzurob
Differential Revision: https://reviews.llvm.org/D98581
Since llvm-jitlink moved from gethostbyname to getaddrinfo in D95477, it seems to no longer connect to llvm-jitlink-executor via TCP. I can reproduce this behavior on both, Debian 10 and macOS 10.15.7:
```
> llvm-jitlink-executor listen=localhost:10819
--
> llvm-jitlink --oop-executor-connect=localhost:10819 /path/to/obj.o
Failed to resolve localhost:10819
```
Reviewed By: rzurob
Differential Revision: https://reviews.llvm.org/D98579
This makes the target triple, graph name, and full graph content available
when making decisions about how to populate the linker pass pipeline.
Also updates the LLJITWithObjectLinkingLayerPlugin example to show more
API use, including use of the API changes in this patch.
llvm-jitlink and llvm-jitlink-executor make use of APIs that are
part of the socket and nsl libraries on SunOS systems (Solaris and
Illumos). Make sure they get linked.
Ran into this in Rust CI when cross-compiling LLVM 12 to these
targets.
Differential Revision: https://reviews.llvm.org/D97633
This reverts commit 900f076113 and attempts an actual fix: All failing tests for llvm-jitlink use the `-noexec` flag. The inputs they operate on are not meant for execution on the host system. Looking e.g. at the MachO_test_harness_harnesss.s test, llvm-mc generates input machine code with "x86_64-apple-macosx10.9".
My previous attempt in bbdb4c8c9b disabled the debug support plugin for Windows targets, but what we would actually want is to disable it on Windows HOSTS.
With the new patch here, I don't do exactly that, but instead follow the approach for the EH frame plugin and include the `-noexec` flag in the condition. It should have the desired effect when it comes to the test suite. It appears a little workaround'ish, but should work reliably for now. I will discuss the issue with Lang and see if we can do better. Thanks @thakis again for the temporary fix.
fix attempt http://reviews.llvm.org/rGbbdb4c8c9bcef0e didn't work
The problem is that the test tries to look up
llvm_orc_registerJITLoaderGDBWrapper from the llvm-jitlink.exe
executable, but the symbol wasn't exported. Just manually export it
for now. There's a FIXME with a suggestion for a real fix.
Add a new ObjectLinkingLayer plugin `DebugObjectManagerPlugin` and infrastructure to handle creation of `DebugObject`s as well as their registration in OrcTargetProcess. The current implementation only covers ELF on x86-64, but the infrastructure is not limited to that.
The journey starts with a new `LinkGraph` / `JITLinkContext` pair being created for a `MaterializationResponsibility` in ORC's `ObjectLinkingLayer`. It sends a `notifyMaterializing()` notification, which is forwarded to all registered plugins. The `DebugObjectManagerPlugin` aims to create a `DebugObject` form the provided target triple and object buffer. (Future implementations might create `DebugObject`s from a `LinkGraph` in other ways.) On success it will track it as the pending `DebugObject` for the `MaterializationResponsibility`.
This patch only implements the `ELFDebugObject` for `x86-64` targets. It follows the RuntimeDyld approach for debug object setup: it captures a copy of the input object, parses all section headers and prepares to patch their load-address fields with their final addresses in target memory. It instructs the plugin to report the section load-addresses once they are available. The plugin overrides `modifyPassConfig()` and installs a JITLink post-allocation pass to capture them.
Once JITLink emitted the finalized executable, the plugin emits and registers the `DebugObject`. For emission it requests a new `JITLinkMemoryManager::Allocation` with a single read-only segment, copies the object with patched section load-addresses over to working memory and triggers finalization to target memory. For registration, it notifies the `DebugObjectRegistrar` provided in the constructor and stores the previously pending`DebugObject` as registered for the corresponding MaterializationResponsibility.
The `DebugObjectRegistrar` registers the `DebugObject` with the target process. `llvm-jitlink` uses the `TPCDebugObjectRegistrar`, which calls `llvm_orc_registerJITLoaderGDBWrapper()` in the target process via `TargetProcessControl` to emit a `jit_code_entry` compatible with the GDB JIT interface [1]. So far the implementation only supports registration and no removal. It appears to me that it wouldn't raise any new design questions, so I left this as an addition for the near future.
[1] https://sourceware.org/gdb/current/onlinedocs/gdb/JIT-Interface.html
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D97335
This patch replaces use of deprecated gethostbyname by getaddrinfo.
Author: Rafik Zurob
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D95477
Moves all headers from Orc/RPC to Orc/Shared, and from the llvm::orc::rpc
namespace into llvm::orc::shared. Also renames RPCTypeName to
SerializationTypeName and Function to RPCFunction.
In addition to being a more reasonable home for this code, this will make it
easier for the upcoming Orc runtime to re-use the Serialization system for
creating and parsing wrapper-function binary blobs.
JITLinkDylib represents a target dylib for a JITLink link. By representing this
explicitly we can:
- Enable JITLinkMemoryManagers to manage allocations on a per-dylib basis
(e.g by maintaining a seperate allocation pool for each JITLinkDylib).
- Enable new features and diagnostics that require information about the
target dylib (not implemented in this patch).
LLVMBuild has been removed from the build system. However, three LLVMBuild.txt
files remain in the tree. This patch simply removes them.
llvm/lib/ExecutionEngine/Orc/TargetProcess/LLVMBuild.txt
llvm/tools/llvm-jitlink/llvm-jitlink-executor/LLVMBuild.txt
llvm/tools/llvm-profgen/LLVMBuild.txt
Differential Revision: https://reviews.llvm.org/D92693
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
implementation.
This patch aims to improve support for out-of-process JITing using OrcV2. It
introduces two new class templates, OrcRPCTargetProcessControlBase and
OrcRPCTPCServer, which together implement the TargetProcessControl API by
forwarding operations to an execution process via an Orc-RPC Endpoint. These
utilities are used to implement out-of-process JITing from llvm-jitlink to
a new llvm-jitlink-executor tool.
This patch also breaks the OrcJIT library into three parts:
-- OrcTargetProcess: Contains code needed by the JIT execution process.
-- OrcShared: Contains code needed by the JIT execution and compiler
processes
-- OrcJIT: Everything else.
This break-up allows JIT executor processes to link against OrcTargetProcess
and OrcShared only, without having to link in all of OrcJIT. Clients executing
JIT'd code in-process should start linking against OrcTargetProcess as well as
OrcJIT.
In the near future these changes will enable:
-- Removal of the OrcRemoteTargetClient/OrcRemoteTargetServer class templates
which provided similar functionality in OrcV1.
-- Restoration of Chapter 5 of the Building-A-JIT tutorial series, which will
serve as a simple usage example for these APIs.
-- Implementation of lazy, cross-target compilation in lli's -jit-kind=orc-lazy
mode.