See the bug report at https://github.com/google/sanitizers/issues/691. When a dynamic alloca has a constant size, ASan instrumentation will treat it as a regular dynamic alloca (insert calls to poison and unpoison), but the backend will turn it into a regular stack variable. The poisoning/unpoisoning is then broken. This patch will treat such allocas as static.
Differential Revision: http://reviews.llvm.org/D21509
llvm-svn: 273888
It did not handle correctly cases without GEP.
The following loop wasn't vectorized:
for (int i=0; i<len; i++)
*to++ = *from++;
I use getPtrStride() to find Stride for memory access and return 0 is the Stride is not 1 or -1.
Re-commit rL273257 - revision: http://reviews.llvm.org/D20789
llvm-svn: 273864
Summary:
This is a straightforward extension of what LoopUnswitch does to
branches to guards. That is, we unswitch
```
for (;;) {
...
guard(loop_invariant_cond);
...
}
```
into
```
if (loop_invariant_cond) {
for (;;) {
...
// There is no need to emit guard(true)
...
}
} else {
for (;;) {
...
guard(false);
// SimplifyCFG will clean this up by adding an
// unreachable after the guard(false)
...
}
}
```
Reviewers: majnemer
Subscribers: mcrosier, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D21725
llvm-svn: 273801
SimplifyCFG had logic to insert calls to llvm.trap for two very
particular IR patterns: stores and invokes of undef/null.
While InstCombine canonicalizes certain undefined behavior IR patterns
to stores of undef, phase ordering means that this cannot be relied upon
in general.
There are much better tools than llvm.trap: UBSan and ASan.
N.B. I could be argued into reverting this change if a clear argument as
to why it is important that we synthesize llvm.trap for stores, I'd be
hard pressed to see why it'd be useful for invokes...
llvm-svn: 273778
This intrinsic safely loads a function pointer from a virtual table pointer
using type metadata. This intrinsic is used to implement control flow integrity
in conjunction with virtual call optimization. The virtual call optimization
pass will optimize away llvm.type.checked.load intrinsics associated with
devirtualized calls, thereby removing the type check in cases where it is
not needed to enforce the control flow integrity constraint.
This patch also introduces the capability to copy type metadata between
global variables, and teaches the virtual call optimization pass to do so.
Differential Revision: http://reviews.llvm.org/D21121
llvm-svn: 273756
r273711 was reverted by r273743. The inliner needs to know about any
call sites in the inlined function. These were obscured if we replaced
a call to undef with an undef but kept the call around.
This fixes PR28298.
llvm-svn: 273753
Summary: Set ProfileSummary in SampleProfilerLoader.
Reviewers: davidxl, eraman
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21702
llvm-svn: 273745
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
This patch moves MSSA's caching walker into MemorySSA, and moves the
actual definition of MSSA's caching walker out of MemorySSA.h. This is
done in preparation for the new walker, which should be out for review
soonish.
Also, this patch removes a field from UpwardsMemoryQuery and has a few
lines of diff from clang-format'ing MemorySSA.cpp.
llvm-svn: 273723
By putting all the possible commutations together, we simplify the code.
Note that this is NFCI, but I'm adding tests that actually exercise each
commutation pattern because we don't have this anywhere else.
llvm-svn: 273702
The interleaved access analysis currently assumes that the inserted run-time
pointer aliasing checks ensure the absence of dependences that would prevent
its instruction reordering. However, this is not the case.
Issues can arise from how code generation is performed for interleaved groups.
For a load group, all loads in the group are essentially moved to the location
of the first load in program order, and for a store group, all stores in the
group are moved to the location of the last store. For groups having members
involved in a dependence relation with any other instruction in the loop, this
reordering can violate the dependence.
This patch teaches the interleaved access analysis how to avoid breaking such
dependences, and should fix PR27626.
An assumption of the original analysis was that the accesses had been collected
in "program order". The analysis was then simplified by visiting the accesses
bottom-up. However, this ordering was never guaranteed for anything other than
single basic block loops. Thus, this patch also enforces the desired ordering.
Reference: https://llvm.org/bugs/show_bug.cgi?id=27626
Differential Revision: http://reviews.llvm.org/D19984
llvm-svn: 273687
Summary:
We can avoid repeating the check `isGuaranteedToExecute` when it's already called once while checking if the alignment can be widened for the load/store being hoisted.
The function is invariant for the same instruction `UI` in `isGuaranteedToExecute(*UI, DT, CurLoop, SafetyInfo);`
Reviewers: hfinkel, eli.friedman
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21672
llvm-svn: 273671
reduce the number of comparisons.
Specifically, InstCombine can turn:
(i == 5334 || i == 5335)
into:
((i | 1) == 5335)
SimplifyCFG was already able to detect the pattern:
(i == 5334 || i == 5335)
to:
((i & -2) == 5334)
This patch supersedes D21315 and resolves PR27555
(https://llvm.org/bugs/show_bug.cgi?id=27555).
Thanks to David and Chandler for the suggestions!
Author: Thomas Jablin (tjablin)
Reviewers: majnemer chandlerc halfdan cycheng
http://reviews.llvm.org/D21397
llvm-svn: 273639
Summary:
This instcombine rule folds away trunc operations that have value available from a prior load or store.
This kind of code can be generated as a result of GVN widening the load or from source code as well.
Reviewers: reames, majnemer, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21246
llvm-svn: 273608
DeadStoreElimination can currently remove a small store rendered unnecessary by
a later larger one, but could not remove a larger store rendered unnecessary by
a series of later smaller ones. This adds that capability.
It works by keeping a map, which is used as an effective interval map, for each
store later overwritten only partially, and filling in that interval map as
more such stores are discovered. No additional walking or aliasing queries are
used. In the map forms an interval covering the the entire earlier store, then
it is dead and can be removed. The map is used as an interval map by storing a
mapping between the ending offset and the beginning offset of each interval.
I discovered this problem when investigating a performance issue with code like
this on PowerPC:
#include <complex>
using namespace std;
complex<float> bar(complex<float> C);
complex<float> foo(complex<float> C) {
return bar(C)*C;
}
which produces this:
define void @_Z4testSt7complexIfE(%"struct.std::complex"* noalias nocapture sret %agg.result, i64 %c.coerce) {
entry:
%ref.tmp = alloca i64, align 8
%tmpcast = bitcast i64* %ref.tmp to %"struct.std::complex"*
%c.sroa.0.0.extract.shift = lshr i64 %c.coerce, 32
%c.sroa.0.0.extract.trunc = trunc i64 %c.sroa.0.0.extract.shift to i32
%0 = bitcast i32 %c.sroa.0.0.extract.trunc to float
%c.sroa.2.0.extract.trunc = trunc i64 %c.coerce to i32
%1 = bitcast i32 %c.sroa.2.0.extract.trunc to float
call void @_Z3barSt7complexIfE(%"struct.std::complex"* nonnull sret %tmpcast, i64 %c.coerce)
%2 = bitcast %"struct.std::complex"* %agg.result to i64*
%3 = load i64, i64* %ref.tmp, align 8
store i64 %3, i64* %2, align 4 ; <--- ***** THIS SHOULD NOT BE HERE ****
%_M_value.realp.i.i = getelementptr inbounds %"struct.std::complex", %"struct.std::complex"* %agg.result, i64 0, i32 0, i32 0
%4 = lshr i64 %3, 32
%5 = trunc i64 %4 to i32
%6 = bitcast i32 %5 to float
%_M_value.imagp.i.i = getelementptr inbounds %"struct.std::complex", %"struct.std::complex"* %agg.result, i64 0, i32 0, i32 1
%7 = trunc i64 %3 to i32
%8 = bitcast i32 %7 to float
%mul_ad.i.i = fmul fast float %6, %1
%mul_bc.i.i = fmul fast float %8, %0
%mul_i.i.i = fadd fast float %mul_ad.i.i, %mul_bc.i.i
%mul_ac.i.i = fmul fast float %6, %0
%mul_bd.i.i = fmul fast float %8, %1
%mul_r.i.i = fsub fast float %mul_ac.i.i, %mul_bd.i.i
store float %mul_r.i.i, float* %_M_value.realp.i.i, align 4
store float %mul_i.i.i, float* %_M_value.imagp.i.i, align 4
ret void
}
the problem here is not just that the i64 store is unnecessary, but also that
it blocks further backend optimizations of the other uses of that i64 value in
the backend.
In the future, we might want to add a special case for handling smaller
accesses (e.g. using a bit vector) if the map mechanism turns out to be
noticeably inefficient. A sorted vector is also a possible replacement for the
map for small numbers of tracked intervals.
Differential Revision: http://reviews.llvm.org/D18586
llvm-svn: 273559