The motivation for this patch starts with PR20134:
https://llvm.org/bugs/show_bug.cgi?id=20134
void foo(int *a, int i) {
a[i] = a[i+1] + a[i+2];
}
It seems better to produce this (14 bytes):
movslq %esi, %rsi
movl 0x4(%rdi,%rsi,4), %eax
addl 0x8(%rdi,%rsi,4), %eax
movl %eax, (%rdi,%rsi,4)
Rather than this (22 bytes):
leal 0x1(%rsi), %eax
cltq
leal 0x2(%rsi), %ecx
movslq %ecx, %rcx
movl (%rdi,%rcx,4), %ecx
addl (%rdi,%rax,4), %ecx
movslq %esi, %rax
movl %ecx, (%rdi,%rax,4)
The most basic problem (the first test case in the patch combines constants) should also be fixed in InstCombine,
but it gets more complicated after that because we need to consider architecture and micro-architecture. For
example, AArch64 may not see any benefit from the more general transform because the ISA solves the sexting in
hardware. Some x86 chips may not want to replace 2 ADD insts with 1 LEA, and there's an attribute for that:
FeatureSlowLEA. But I suspect that doesn't go far enough or maybe it's not getting used when it should; I'm
also not sure if FeatureSlowLEA should also mean "slow complex addressing mode".
I see no perf differences on test-suite with this change running on AMD Jaguar, but I see small code size
improvements when building clang and the LLVM tools with the patched compiler.
A more general solution to the sext(add nsw(x, C)) problem that works for multiple targets is available
in CodeGenPrepare, but it may take quite a bit more work to get that to fire on all of the test cases that
this patch takes care of.
Differential Revision: http://reviews.llvm.org/D13757
llvm-svn: 250560
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
llvm-svn: 250456
Summary:
x86 codegen is clever about generating good code for relaxed
floating-point operations, but it was being silly when globals and
immediates were involved, forgetting where the global was and
loading/storing from/to the wrong place. The same applied to hard-coded
address immediates.
Don't let it forget about the displacement.
This fixes https://llvm.org/bugs/show_bug.cgi?id=25171
A very similar bug when doing floating-points atomics to the stack is
also fixed by this patch.
This fixes https://llvm.org/bugs/show_bug.cgi?id=25144
Reviewers: pete
Subscribers: llvm-commits, majnemer, rsmith
Differential Revision: http://reviews.llvm.org/D13749
llvm-svn: 250429
AVX-512 bit shuffle fails on 32 bit since we create a vector of 64-bit constants.
I split 8x64-bit const vector to 16x32 on 32-bit mode.
Differential Revision: http://reviews.llvm.org/D13644
llvm-svn: 250390
Function LowerVSETCC (in X86ISelLowering.cpp) worked under the wrong
assumption that for non-AVX512 targets, the source type and destination type
of a type-legalized setcc node were always the same type.
This assumption was unfortunately incorrect; the type legalizer is not always
able to promote the return type of a setcc to the same type as the first
operand of a setcc.
In the case of a vsetcc node, the legalizer firstly checks if the first input
operand has a legal type. If so, then it promotes the return type of the vsetcc
to that same type. Otherwise, the return type is promoted to the 'next legal
type', which, for vectors of MVT::i1 is always a 128-bit integer vector type.
Example (-mattr=+avx):
%0 = trunc <8 x i32> %a to <8 x i23>
%1 = icmp eq <8 x i23> %0, zeroinitializer
The initial selection dag for the code above is:
v8i1 = setcc t5, t7, seteq:ch
t5: v8i23 = truncate t2
t2: v8i32,ch = CopyFromReg t0, Register:v8i32 %vreg1
t7: v8i32 = build_vector of all zeroes.
The type legalizer would firstly check if 't5' has a legal type. If so, then it
would reuse that same type to promote the return type of the setcc node.
Unfortunately 't5' is of illegal type v8i23, and therefore it cannot be used to
promote the return type of the setcc node. Consequently, the setcc return type
is promoted to v8i16. Later on, 't5' is promoted to v8i32 thus leading to the
following dag node:
v8i16 = setcc t32, t25, seteq:ch
where t32 and t25 are now values of type v8i32.
Before this patch, function LowerVSETCC would have wrongly expanded the setcc
to a single X86ISD::PCMPEQ. Surprisingly, ISel was still able to match an
instruction. In our case, ISel would have matched a VPCMPEQWrr:
t37: v8i16 = X86ISD::VPCMPEQWrr t36, t25
However, t36 and t25 are both VR256, while the result type is instead of class
VR128. This inconsistency ended up causing the insertion of COPY instructions
like this:
%vreg7<def> = COPY %vreg3; VR128:%vreg7 VR256:%vreg3
Which is an invalid full copy (not a sub register copy).
Eventually, the backend would have hit an UNREACHABLE "Cannot emit physreg copy
instruction" in the attempt to expand the malformed pseudo COPY instructions.
This patch fixes the problem adding the missing logic in LowerVSETCC to handle
the corner case of a setcc with 128-bit return type and 256-bit operand type.
This problem was originally reported by Dimitry as PR25080. It has been latent
for a very long time. I have added the minimal reproducible from that bugzilla
as test setcc-lowering.ll.
Differential Revision: http://reviews.llvm.org/D13660
llvm-svn: 250085
This patch fixes a problem in function 'combineX86ShuffleChain' that causes a
chain of shuffles to be wrongly folded away when the combined shuffle mask has
only one element.
We may end up with a combined shuffle mask of one element as a result of
multiple calls to function 'canWidenShuffleElements()'.
Function canWidenShuffleElements attempts to simplify a shuffle mask by widening
the size of the elements being shuffled.
For every pair of shuffle indices, function canWidenShuffleElements checks if
indices refer to adjacent elements. If all pairs refer to "adjacent" elements
then the shuffle mask is safely widened. As a consequence of widening, we end up
with a new shuffle mask which is half the size of the original shuffle mask.
The byte shuffle (pshufb) from test pr24562.ll has a mask of all SM_SentinelZero
indices. Function canWidenShuffleElements would combine each pair of
SM_SentinelZero indices into a single SM_SentinelZero index. So, in a
logarithmic number of steps (4 in this case), the pshufb mask is simplified to
a mask with only one index which is equal to SM_SentinelZero.
Before this patch, function combineX86ShuffleChain wrongly assumed that a mask
of size one is always equivalent to an identity mask. So, the entire shuffle
chain was just folded away as the combined shuffle mask was treated as a no-op
mask.
With this patch we know check if the only element of a combined shuffle mask is
SM_SentinelZero. In case, we propagate a zero vector.
Differential Revision: http://reviews.llvm.org/D13364
llvm-svn: 250027
The XOP vector integer comparisons can deal with all signed/unsigned comparison cases directly and can be easily commuted as well (D7646).
llvm-svn: 249976
When running combine on an extract_vector_elt, it wants to look through
a bitcast to check if the argument to the bitcast was itself an
extract_vector_elt with particular operands.
However, it called getOperand() on the argument to the bitcast *before*
checking that the opcode was EXTRACT_VECTOR_ELT, assert-failing if there
were zero operands for the actual opcode.
Fix, and add trivial test.
llvm-svn: 249891
This instructions doesn't have intrincis.
Added tests for lowering and encoding.
Differential Revision: http://reviews.llvm.org/D12317
llvm-svn: 249688
This fixes two separate bugs:
1) The mask for the high lane was not set correctly. That fixes PR24532.
2) The transformation should bail out if it believes it involves more than
2 lanes, as it does not currently do anything sensible in this case.
Differential Revision: http://reviews.llvm.org/D13505
llvm-svn: 249669
Summary:
- Add CoreCLR to if/else ladders and switches as appropriate.
- Rename isMSVCEHPersonality to isFuncletEHPersonality to better
reflect what it captures.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: pgavlin, AndyAyers, llvm-commits
Differential Revision: http://reviews.llvm.org/D13449
llvm-svn: 249455
The custom lowering in LowerExtendedLoad is doing the equivalent shuffle, so make use of existing lowering code to reduce duplication.
llvm-svn: 249243
The custom code produces incorrect results if later reassociated.
Since r221657, on x86, vNi32 uitofp is lowered using an optimized
sequence:
movdqa LCPI0_0(%rip), %xmm1 ## xmm1 = [65535, ...]
pand %xmm0, %xmm1
por LCPI0_1(%rip), %xmm1 ## [0x4b000000, ...]
psrld $16, %xmm0
por LCPI0_2(%rip), %xmm0 ## [0x53000000, ...]
addps LCPI0_3(%rip), %xmm0 ## [float -5.497642e+11, ...]
addps %xmm1, %xmm0
Since r240361, the machine combiner opportunistically reassociates
2-instruction sequences (with -ffast-math). In the new code sequence,
the ADDPS' are eligible. In isolation, for simple examples (without
reassociable users), this makes no performance difference (the goal
being to enable reassociation of longer chains).
In the trivial example (just one uitofp), the reassociation doesn't
happen, because (I think) it would require the emission of a separate
movaps for a constantpool load (instead of folding it into addps).
However, when we have multiple uitofp sequences, and the constantpool
loads are CSE'd earlier, the machine combiner can do the reassociation.
When the ADDPS' are reassociated, the resulting sequence isn't correct
anymore, as we'd be adding large (2**39) constants with comparatively
smaller values (~2**23). Given that two of the three inputs are powers
of 2 larger than 2**16, and that ulp(2**39) == 2**(39-24) == 2**15,
the reassociated chain will produce 0 for any input in [0, 2**14[.
In my testing, it also produces wrong results for 99.5% of [0, 2**32[.
Avoid this by disabling the new lowering when -ffast-math. It does
mean that we'll get slower code than without it, but at least we
won't get egregiously incorrect code.
One might argue that, considering -ffast-math is all but meaningless,
uitofp producing wrong results isn't a compiler bug. But it really is.
Fixes PR24512.
...though this is really more of a workaround.
Ideally, we'd have some sort of Machine FMF, but that's a problem
that's not worth tackling until we do more with machine IR.
llvm-svn: 248965
The Win64 unwinder disassembles forwards from each PC to try to
determine if this PC is in an epilogue. If so, it skips calling the EH
personality function for that frame. Typically, this means you cannot
catch an exception in the same frame that you threw it, because 'throw'
calls a noreturn runtime function.
Previously we avoided this problem with the TrapUnreachable
TargetOption, but that's a much bigger hammer than we need. All we need
is a 1 byte non-epilogue instruction right after the call. Instead,
what we got was an unconditional branch to a shared block containing the
ud2, potentially 7 bytes instead of 1. So, this reverts r206684, which
added TrapUnreachable, and replaces it with something better.
The new code pattern matches for invoke/call followed by unreachable and
inserts an int3 into the DAG. To be 100% watertight, we would need to
insert SEH_Epilogue instructions into all basic blocks ending in a call
with no terminators or successors, but in practice this is unlikely to
come up.
llvm-svn: 248959
The XOP shifts just have logical/arithmetic versions and the left/right shifts are controlled by whether the value is positive/negative. Because of this I've added new X86ISD nodes instead of trying to force them to use the existing shift nodes.
Additionally Excavator cores (bdver4) support XOP and AVX2 - meaning that it should use the AVX2 shifts when it can and fall back to XOP in other cases.
Differential Revision: http://reviews.llvm.org/D8690
llvm-svn: 248878
HHVM calling convention, hhvmcc, is used by HHVM JIT for
functions in translated cache. We currently support LLVM back end to
generate code for X86-64 and may support other architectures in the
future.
In HHVM calling convention any GP register could be used to pass and
return values, with the exception of R12 which is reserved for
thread-local area and is callee-saved. Other than R12, we always
pass RBX and RBP as args, which are our virtual machine's stack pointer
and frame pointer respectively.
When we enter translation cache via hhvmcc function, we expect
the stack to be aligned at 16 bytes, i.e. skewed by 8 bytes as opposed
to standard ABI alignment. This affects stack object alignment and stack
adjustments for function calls.
One extra calling convention, hhvm_ccc, is used to call C++ helpers from
HHVM's translation cache. It is almost identical to standard C calling
convention with an exception of first argument which is passed in RBP
(before we use RDI, RSI, etc.)
Differential Revision: http://reviews.llvm.org/D12681
llvm-svn: 248832
alignment requirements, for example in the case of vectors.
These requirements are exploited by the code generator by using
move instructions that have similar alignment requirements, e.g.,
movaps on x86.
Although the code generator properly aligns the arguments with
respect to the displacement of the stack pointer it computes,
the displacement itself may cause misalignment. For example if
we have
%3 = load <16 x float>, <16 x float>* %1, align 64
call void @bar(<16 x float> %3, i32 0)
the x86 back-end emits:
movaps 32(%ecx), %xmm2
movaps (%ecx), %xmm0
movaps 16(%ecx), %xmm1
movaps 48(%ecx), %xmm3
subl $20, %esp <-- if %esp was 16-byte aligned before this instruction, it no longer will be afterwards
movaps %xmm3, (%esp) <-- movaps requires 16-byte alignment, while %esp is not aligned as such.
movl $0, 16(%esp)
calll __bar
To solve this, we need to make sure that the computed value with which
the stack pointer is changed is a multiple af the maximal alignment seen
during its computation. With this change we get proper alignment:
subl $32, %esp
movaps %xmm3, (%esp)
Differential Revision: http://reviews.llvm.org/D12337
llvm-svn: 248786
Fix for D12561 - we weren't correctly ensuring that the base element for extension was moved to start on a boundary suitable for UNPCKL/H
llvm-svn: 248536
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
The BEXTR comments didn't make sense before, we may want to extend the
FP logic transform to work on vectors, and this way is more beautiful.
llvm-svn: 248404
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
llvm-svn: 248357
This patch generalizes the lowering of shuffles as zero extensions to allow extensions that don't start from the first element. It now recognises extensions starting anywhere in the lower 128-bits or at the start of any higher 128-bit lane.
The motivation was to reduce the number of high cost pshufb calls, but it also improves the SSE2 case as well.
Differential Revision: http://reviews.llvm.org/D12561
llvm-svn: 248250
Now that we have fast vector CTPOP implementations we can use this to speed up vector CTTZ using the pattern (cttz(x) = ctpop((x & -x) - 1))
Additionally, for AVX512CD that provides lzcnt instructions we can use the pattern (cttz_undef(x) = (width - 1) - ctlz(x & -x))
Differential Revision: http://reviews.llvm.org/D12663
llvm-svn: 248091
This makes catchret look more like a branch, and less like a weird use
of BlockAddress. It also lets us get away from
llvm.x86.seh.restoreframe, which relies on the old parentfpoffset label
arithmetic.
llvm-svn: 247936
AVX-512 does not provide an instruction that shuffles mask register. So I do the following way:
mask-2-simd , shuffle simd , simd-2-mask
Differential Revision: http://reviews.llvm.org/D12727
llvm-svn: 247876
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
KNL does not have VXORPS, VORPS for 512-bit values.
I use integer VPXOR, VPOR that actually do the same.
X86ISD::FXOR/FOR are generated as a result of FSUB combining.
Differential Revision: http://reviews.llvm.org/D12753
llvm-svn: 247523
We used to have this magic "hasLoadLinkedStoreConditional()" callback,
which really meant two things:
- expand cmpxchg (to ll/sc).
- expand atomic loads using ll/sc (rather than cmpxchg).
Remove it, and, instead, introduce explicit callbacks:
- bool shouldExpandAtomicCmpXchgInIR(inst)
- AtomicExpansionKind shouldExpandAtomicLoadInIR(inst)
Differential Revision: http://reviews.llvm.org/D12557
llvm-svn: 247429
All of the complexity is in cleanupret, and it mostly follows the same
codepaths as catchret, except it doesn't take a return value in RAX.
This small example now compiles and executes successfully on win32:
extern "C" int printf(const char *, ...) noexcept;
struct Dtor {
~Dtor() { printf("~Dtor\n"); }
};
void has_cleanup() {
Dtor o;
throw 42;
}
int main() {
try {
has_cleanup();
} catch (int) {
printf("caught it\n");
}
}
Don't try to put the cleanup in the same function as the catch, or Bad
Things will happen.
llvm-svn: 247219
The 32-bit tables don't actually contain PC range data, so emitting them
is incredibly simple.
The 64-bit tables, on the other hand, use the same table for state
numbering as well as label ranges. This makes things more difficult, so
it will be implemented later.
llvm-svn: 247192
Summary: This patch modifies X86TargetLowering::LowerVASTART so that
struct va_list is initialized with 32 bit pointers in x32. It also
includes tests that call @llvm.va_start() for x32.
Patch by João Porto
Subscribers: llvm-commits, hjl.tools
Differential Revision: http://reviews.llvm.org/D12346
llvm-svn: 247069
This is a continuation of the fix from:
http://reviews.llvm.org/D10662
and discussion in:
http://reviews.llvm.org/D12154
Here, we distinguish slow unaligned SSE (128-bit) accesses from slow unaligned
scalar (64-bit and under) accesses. Other lowering (eg, getOptimalMemOpType)
assumes that unaligned scalar accesses are always ok, so this changes
allowsMisalignedMemoryAccesses() to match that behavior.
Differential Revision: http://reviews.llvm.org/D12543
llvm-svn: 246658
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
Summary:
This change makes the variable argument intrinsics, `llvm.va_start` and
`llvm.va_copy`, and the `va_arg` instruction behave as they do on Windows
inside a `CallingConv::X86_64_Win64` function. It's needed for a Clang patch
I have to add support for GCC's `__builtin_ms_va_list` constructs.
Reviewers: nadav, asl, eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1622
llvm-svn: 245990
This fixes two issues in x86 fptoui lowering.
1) Makes conversions from f80 go through the right path on AVX-512.
2) Implements an inline sequence for fptoui i64 instead of a library
call. This improves performance by 6X on SSE3+ and 3X otherwise.
Incidentally, it also removes the use of ftol2 for fptoui, which was
wrong to begin with, as ftol2 converts to a signed i64, producing
wrong results for values >= 2^63.
Patch by: mitch.l.bodart@intel.com
Differential Revision: http://reviews.llvm.org/D11316
llvm-svn: 245924
This is a 'no functional change intended' patch. It removes one FIXME, but adds several more.
Motivation: the FeatureFastUAMem attribute may be too general. It is used to determine if any
sized misaligned memory access under 32-bytes is 'fast'. From the added FIXME comments, however,
you can see that we're not consistent about this. Changing the name of the attribute makes it
clearer to see the logic holes.
Changing this to a 'slow' attribute also means we don't have to add an explicit 'fast' attribute
to new chips; fast unaligned accesses have been standard for several generations of CPUs now.
Differential Revision: http://reviews.llvm.org/D12154
llvm-svn: 245729
Fixes PR23464: one way to use the broadcast intrinsics is:
_mm256_broadcastw_epi16(_mm_cvtsi32_si128(*(int*)src));
We don't currently fold this, but now that we use native IR for
the intrinsics (r245605), we can look through one bitcast to find
the broadcast scalar.
Differential Revision: http://reviews.llvm.org/D10557
llvm-svn: 245613
We don't do a great job with >= 0 comparisons against zero when the
result is used as an i8.
Given something like:
void f(long long LL, bool *B) {
*B = LL >= 0;
}
We used to generate:
shrq $63, %rdi
xorb $1, %dil
movb %dil, (%rsi)
Now we generate:
testq %rdi, %rdi
setns (%rsi)
Differential Revision: http://reviews.llvm.org/D12136
llvm-svn: 245498
This patch updates the X86 lowering so that the Exception Pointer and Selector
are 64-bit wide only if Subtarget.isTarget64BitLP64.
Patch by João Porto
Reviewers: dschuff, rnk
Differential Revision: http://reviews.llvm.org/D12111
llvm-svn: 245454
There are some cases where the mul sequence is smaller, but for the most part,
using a div is preferable. This does not apply to vectors, since x86 doesn't
have vector idiv, and a vector mul/shifts sequence ought to be smaller than a
scalarized division.
Differential Revision: http://reviews.llvm.org/D12082
llvm-svn: 245431
This consolidates use of isUnalignedMem32Slow() in one place.
There is a slight change in logic although I'm not sure that it would ever
come up in the real world: we were assuming that an alignment of the type
size is always fast; now, we actually check the data layout to confirm that.
llvm-svn: 245382
This patch fixes the x86 implementation of allowsMisalignedMemoryAccess() to correctly
return the 'Fast' output parameter for 32-byte accesses. To test that, an existing load
merging optimization is changed to use the TLI hook. This exposes a shortcoming in the
current logic and results in the regression test update. Changing other direct users of
the isUnalignedMem32Slow() x86 CPU attribute would be a follow-on patch.
Without the fix in allowsMisalignedMemoryAccesses(), we will infinite loop when targeting
SandyBridge because LowerINSERT_SUBVECTOR() creates 32-byte loads from two 16-byte loads
while PerformLOADCombine() splits them back into 16-byte loads.
Differential Revision: http://reviews.llvm.org/D10662
llvm-svn: 245075
Follow up to D10947 - D9746 added general SMAX/SMIN/UMAX/UMIN pattern matching to SelectionDAGBuilder::visitSelect.
This patch removes the X86 implementation and improves the AVX1/AVX2 support to correctly lower 256-bit integer vectors.
Differential Revision: http://reviews.llvm.org/D12006
llvm-svn: 244949
As discussed in D11886, this patch moves the SSE/AVX vector blend folding to instcombiner from PerformINTRINSIC_WO_CHAINCombine (which allows us to remove this completely).
InstCombiner already had partial support for this, I just had to add support for zero (ConstantAggregateZero) masks and also the case where both selection inputs were the same (allowing us to ignore the mask).
I also moved all the relevant combine tests into InstCombine/blend_x86.ll
Differential Revision: http://reviews.llvm.org/D11934
llvm-svn: 244723
The same value is used multiple times through the function. Hoist the condition
into a variable. This should fix a silly static analysis warning where the
conditions flip around. No functional change intended.
llvm-svn: 244713
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
As discussed in D11760, this patch moves the (V)PSRA(WD) arithmetic shift-by-constant folding to InstCombine to match the logical shift implementations.
Differential Revision: http://reviews.llvm.org/D11886
llvm-svn: 244495