This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
This reverts commit 61ba1481e2.
I'm reverting this because it breaks the lldb build with
incomplete switch coverage warnings. I would fix it forward,
but am not familiar enough with lldb to determine the correct
fix.
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:3958:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4633:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4889:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
Introduction/Motivation:
LLVM-IR supports integers of non-power-of-2 bitwidth, in the iN syntax.
Integers of non-power-of-two aren't particularly interesting or useful
on most hardware, so much so that no language in Clang has been
motivated to expose it before.
However, in the case of FPGA hardware normal integer types where the
full bitwidth isn't used, is extremely wasteful and has severe
performance/space concerns. Because of this, Intel has introduced this
functionality in the High Level Synthesis compiler[0]
under the name "Arbitrary Precision Integer" (ap_int for short). This
has been extremely useful and effective for our users, permitting them
to optimize their storage and operation space on an architecture where
both can be extremely expensive.
We are proposing upstreaming a more palatable version of this to the
community, in the form of this proposal and accompanying patch. We are
proposing the syntax _ExtInt(N). We intend to propose this to the WG14
committee[1], and the underscore-capital seems like the active direction
for a WG14 paper's acceptance. An alternative that Richard Smith
suggested on the initial review was __int(N), however we believe that
is much less acceptable by WG14. We considered _Int, however _Int is
used as an identifier in libstdc++ and there is no good way to fall
back to an identifier (since _Int(5) is indistinguishable from an
unnamed initializer of a template type named _Int).
[0]https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html)
[1]http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2472.pdf
Differential Revision: https://reviews.llvm.org/D73967
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
The problem was reported in PR45468, applying target features to an
always_inline constructor/destructor runs afoul of GlobalDecl
construction assert when checking for target-feature compatibility.
The core problem is fixed by using the version of the check that takes a
FunctionDecl rather than the GlobalDecl. However, while writing the
test, I discovered that source locations weren't properly set for this
check on ctors/dtors. This patch also fixes constructors and CALLED destructors.
Unfortunately, it doesn't seem too possible to get a meaningful source
location for a 'cleanup' destructor, so those are still 'frontend' level
errors unfortunately. A fixme was added to the test to cover that
situation.
Summary: This allows instrumenting things like global initializers
Reviewers: dberris, MaskRay, smeenai
Subscribers: cfe-commits, johnislarry
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77191
This patch adds 'q' to mean 'scalable vector' in the builtin
type string, and for SVE will return the matching builtin
type as defined in the C/C++ language extensions for SVE.
This patch also adds some scaffolding to generate the arm_sve.h
header file, and some builtin definitions (+CodeGen) to be able
to implement some simple masked load intrinsics that use the
ACLE types, such as:
svint8_t test_svld1_s8(svbool_t pg, const int8_t *base) {
return svld1_s8(pg, base);
}
Reviewers: efriedma, rjmccall, rovka, rsandifo-arm, rengolin
Reviewed By: efriedma
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75298
norecurse function attr indicates the function is not called recursively
directly or indirectly.
Add norecurse to OpenCL functions, SYCL functions in device compilation
and CUDA/HIP kernels.
Although there is LLVM pass adding norecurse to functions, it only works
for whole-program compilation. Also FE adding norecurse can make that
pass run faster since functions with norecurse do not need to be checked
again.
Differential Revision: https://reviews.llvm.org/D73651
Reapply 8a56d64d76 with minor fixes.
The problem was that cancellation can cause new edges to the parallel
region exit block which is not outlined. The CodeExtractor will encode
the information which "exit" was taken as a return value. The fix is to
ensure we do not return any value from the outlined function, to prevent
control to value conversion we ensure a single exit block for the
outlined region.
This reverts commit 3aac953afa.
In order to fix PR44560 and to prepare for loop transformations we now
finalize a function late, which will also do the outlining late. The
logic is as before but the actual outlining step happens now after the
function was fully constructed. Once we have loop transformations we
can apply them in the finalize step before the outlining.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D74372
The function attributes xray-skip-entry, xray-skip-exit, and
xray-ignore-loops were only being applied if a function had an
xray-instrument attribute, but they should apply if xray is enabled
globally too.
Differential Revision: https://reviews.llvm.org/D73842
Extend -fxray-instrumentation-bundle to split function-entry and
function-exit into two separate options, so that it is possible to
instrument only function entry or only function exit. For use cases
that only care about one or the other this will save significant overhead
and code size.
Differential Revision: https://reviews.llvm.org/D72890
XRay allows tuning by minimum function size, but also always instruments
functions with loops in them. If the minimum function size is set to a
large value the loop instrumention ends up causing most functions to be
instrumented anyway. This adds a new flag, -fxray-ignore-loops, to disable
the loop detection logic.
Differential Revision: https://reviews.llvm.org/D72873
The option will limit debug info by only emitting complete class
type information when its constructor is emitted.
This patch changes comparisons with LimitedDebugInfo to use the new
level instead.
Differential Revision: https://reviews.llvm.org/D72427
In the backend, this feature is implemented with the function attribute
"patchable-function-entry". Both the attribute and XRay use
TargetOpcode::PATCHABLE_FUNCTION_ENTER, so the two features are
incompatible.
Reviewed By: ostannard, MaskRay
Differential Revision: https://reviews.llvm.org/D72222
This feature is generic. Make it applicable for AArch64 and X86 because
the backend has only implemented NOP insertion for AArch64 and X86.
Reviewed By: nickdesaulniers, aaron.ballman
Differential Revision: https://reviews.llvm.org/D72221
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch moves some of the code from CodeGen to create an
appropriate feature map that we can pass to the function.
Differential Revision: https://reviews.llvm.org/D68627
GCC's x86 and s390 ports support -mrecord-mcount. Other ports reject the
option.
aarch64-linux-gnu-gcc: error: unrecognized command line option ‘-mrecord-mcount’
Allowing this option can cause failures when building Linux kernel for
aarch64, powerpc64, etc, which will think the feature is available if
the clang command returns 0.
Recognize -mrecord-mcount from the command line and add a function attribute
"mrecord-mcount" when passed.
Only valid on SystemZ (when used with -mfentry).
Review: Ulrich Weigand
https://reviews.llvm.org/D71627
Let the "mnop-mcount" function attribute simply be present or non-present.
Update SystemZ backend as well to use hasFnAttribute() instead.
Review: Ulrich Weigand
https://reviews.llvm.org/D71669
Recognize -mpacked-stack from the command line and add a function attribute
"mpacked-stack" when passed. This is needed for building the Linux kernel.
If this option is passed for any other target than SystemZ, an error is
generated.
Review: Ulrich Weigand
https://reviews.llvm.org/D71441
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch copies some of the code from CodeGen to create an
appropriate feature map that we can pass to the function. Probably
need some refactoring here to share more code with Codegen. Is
there a good place to do that? Also need to support the cpu_specific
attribute as well.
Differential Revision: https://reviews.llvm.org/D68627
This unbreaks the debuginfo-tests testsuite by replacing the assertion
with a default location. There are cleanups in helper functions that
don't have a valid source location such as block copy helpers and it's
not worth tracking each of them down.
rdar://57630879
Patch was reverted because https://bugs.llvm.org/show_bug.cgi?id=44048
The original patch is modified to set the strictfp IR attribute
explicitly in CodeGen instead of as a side effect of IRBuilder.
In the 2nd attempt to reapply there was a windows lit test fail, the
tests were fixed to use wildcard matching.
Differential Revision: https://reviews.llvm.org/D62731
AggValueSlot
This reapplies 8a5b7c3570 after a null
dereference bug in CGOpenMPRuntime::emitUserDefinedMapper.
Original commit message:
This is needed for the pointer authentication work we plan to do in the
near future.
a63a81bd99/clang/docs/PointerAuthentication.rst
checkTargetFeatures was incorrectly checking for cpu_specific instead of
just 'target'. While this function was never called in that situation,
it seemed correct to fix the condition. Additionally, multiversion
functions can never be always_inline, but if any function accidentially
ended up here we shouldn't diagnose.
Note that the adding of target-features to the list is unnecessary since
the getFunctionFeatureMap actually considers attribute target,
however adding it results in significantly better error messages by
putting the 'target' features first (and thus first to fail).
Otherwise, the error message would be the first feature 'implied' by the
target attribute, and not necessarily the feature listed in the
attribute itself.
and a follow-up NFC rearrangement as it's causing a crash on valid. Testcase is on the original review thread.
This reverts commits af57dbf12e and e6584b2b7b
Enumerations that describe rounding mode and exception behavior were
defined inside ConstrainedFPIntrinsic. It makes sense to use the same
definitions to represent the same properties in other cases, not only
in constrained intrinsics. It was however inconvenient as required to
include constrained intrinsics definitions even if they were not needed.
Also using long scope prefix reduced readability.
This change moves these definitioins to the namespace llvm::fp.
No functional changes.
Differential Revision: https://reviews.llvm.org/D69552
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
Add options to control floating point behavior: trapping and
exception behavior, rounding, and control of optimizations that affect
floating point calculations. More details in UsersManual.rst.
Reviewers: rjmccall
Differential Revision: https://reviews.llvm.org/D62731
Recognize -mnop-mcount from the command line and add a function attribute
"mnop-mcount"="true" when passed.
When this option is used, a nop is added instead of a call to fentry. This
is used when building the Linux Kernel.
If this option is passed for any other target than SystemZ, an error is
generated.
Review: Ulrich Weigand
https://reviews.llvm.org/D67763
This reverts commit 004ed2b0d1.
Original commit hash 6d03890384
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
https://reviews.llvm.org/D67723
Summary:
This adds a clang option to disable inline line tables. When it is used,
the inliner uses the call site as the location of the inlined function instead of
marking it as an inline location with the function location.
See https://bugs.llvm.org/show_bug.cgi?id=42344
Reviewers: rnk
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67723
The behavior from the original patch has changed, since we're no longer
allowing LLVM to just ignore the alignment. Instead, we're just
assuming the maximum possible alignment.
Differential Revision: https://reviews.llvm.org/D68824
llvm-svn: 374562
The test fails on Windows, with
error: 'warning' diagnostics expected but not seen:
File builtin-assume-aligned.c Line 62: requested alignment
must be 268435456 bytes or smaller; assumption ignored
error: 'warning' diagnostics seen but not expected:
File builtin-assume-aligned.c Line 62: requested alignment
must be 8192 bytes or smaller; assumption ignored
llvm-svn: 374456
Code to handle __builtin_assume_aligned was allowing larger values, but
would convert this to unsigned along the way. This patch removes the
EmitAssumeAligned overloads that take unsigned to do away with this
problem.
Additionally, it adds a warning that values greater than 1 <<29 are
ignored by LLVM.
Differential Revision: https://reviews.llvm.org/D68824
llvm-svn: 374450
* Adds a TypeSize struct to represent the known minimum size of a type
along with a flag to indicate that the runtime size is a integer multiple
of that size
* Converts existing size query functions from Type.h and DataLayout.h to
return a TypeSize result
* Adds convenience methods (including a transparent conversion operator
to uint64_t) so that most existing code 'just works' as if the return
values were still scalars.
* Uses the new size queries along with ElementCount to ensure that all
supported instructions used with scalable vectors can be constructed
in IR.
Reviewers: hfinkel, lattner, rkruppe, greened, rovka, rengolin, sdesmalen
Reviewed By: rovka, sdesmalen
Differential Revision: https://reviews.llvm.org/D53137
llvm-svn: 374042
The previous version of this used CurFuncDecl in CodeGenFunction,
however this doesn't include lambdas. However, CurCodeDecl DOES. Switch
the check to use CurCodeDecl so that the actual function being emitted
gets checked, preventing an error in ISEL.
llvm-svn: 370261
Summary:
As explained in http://lists.llvm.org/pipermail/llvm-dev/2018-March/121924.html,
the LLVM coroutines transforms are not yet able to move the
instructions for UBSan null checking past coroutine suspend boundaries.
For now, disable all UBSan checks when generating code for coroutines
functions.
I also considered an approach where only '-fsanitize=null' would be disabled,
However in practice this led to other LLVM errors when writing object files:
"Cannot represent a difference across sections". For now, disable all
UBSan checks until coroutine transforms are updated to handle them.
Test Plan:
1. check-clang
2. Compile the program in https://gist.github.com/modocache/54a036c3bf9c06882fe85122e105d153
using the '-fsanitize=null' option and confirm it does not crash
during LLVM IR generation.
Reviewers: GorNishanov, vsk, eric_niebler, lewissbaker
Reviewed By: vsk
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D44672
llvm-svn: 368675
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
A handful of C++ cases as reported in PR42352 didn't actually give an
error when always_inlining with a different target feature list. This
resulted in broken IR.
llvm-svn: 364109
representing no such object, and an "Indeterminate" state representing
an uninitialized object. The latter is not yet used, but soon will be.
llvm-svn: 361328
We need to be able to enqueue internal function that initializes
global constructors on the host side. Therefore it has to be
converted to a kernel.
This change factors out common logic for adding kernel metadata
and moves it from CodeGenFunction to CodeGenModule in order to
make it accessible for the extra use case.
Differential revision: https://reviews.llvm.org/D61488
llvm-svn: 360342
If an address_space attribute is defined in a macro, print the macro instead
when diagnosing a warning or error for incompatible pointers with different
address_spaces.
We allow this for all attributes (not just address_space), and for multiple
attributes declared in the same macro.
Differential Revision: https://reviews.llvm.org/D51329
llvm-svn: 359826
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
UB isn't nice. It's cool and powerful, but not nice.
Having a way to detect it is nice though.
[[ https://wg21.link/p1007r3 | P1007R3: std::assume_aligned ]] / http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1007r2.pdf says:
```
We propose to add this functionality via a library function instead of a core language attribute.
...
If the pointer passed in is not aligned to at least N bytes, calling assume_aligned results in undefined behaviour.
```
This differential teaches clang to sanitize all the various variants of this assume-aligned attribute.
Requires D54588 for LLVM IRBuilder changes.
The compiler-rt part is D54590.
This is a second commit, the original one was r351105,
which was mass-reverted in r351159 because 2 compiler-rt tests were failing.
Reviewers: ABataev, craig.topper, vsk, rsmith, rnk, #sanitizers, erichkeane, filcab, rjmccall
Reviewed By: rjmccall
Subscribers: chandlerc, ldionne, EricWF, mclow.lists, cfe-commits, bkramer
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D54589
llvm-svn: 351177
Summary:
UB isn't nice. It's cool and powerful, but not nice.
Having a way to detect it is nice though.
[[ https://wg21.link/p1007r3 | P1007R3: std::assume_aligned ]] / http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1007r2.pdf says:
```
We propose to add this functionality via a library function instead of a core language attribute.
...
If the pointer passed in is not aligned to at least N bytes, calling assume_aligned results in undefined behaviour.
```
This differential teaches clang to sanitize all the various variants of this assume-aligned attribute.
Requires D54588 for LLVM IRBuilder changes.
The compiler-rt part is D54590.
Reviewers: ABataev, craig.topper, vsk, rsmith, rnk, #sanitizers, erichkeane, filcab, rjmccall
Reviewed By: rjmccall
Subscribers: chandlerc, ldionne, EricWF, mclow.lists, cfe-commits, bkramer
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D54589
llvm-svn: 351105
Summary:
https://reviews.llvm.org/D54862 removed the usages of `ASTContext&` from
within the `CXXMethodDecl::getThisType` method. Remove the parameter
altogether, as well as all usages of it. This does not result in any
functional change because the parameter was unused since
https://reviews.llvm.org/D54862.
Test Plan: check-clang
Reviewers: akyrtzi, mikael
Reviewed By: mikael
Subscribers: mehdi_amini, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D56509
llvm-svn: 350914
This is exactly a "CreateBitCast", so refactor this to get rid of a
'new'.
Note that this slightly changes the test, as the Builder is now
seemingly smart enough to fold one of the bitcasts into the annotation
call.
Change-Id: I1733fb1fdf91f5c9d88651067130b9a4e7b5ab67
llvm-svn: 349506
The __builtin_unpredictable implementation is confused by any implicit
casts, which happen in C++. This patch strips those off so that
if/switch statements now work with it in C++.
Change-Id: I73c3bf4f1775cd906703880944f4fcdc29fffb0a
llvm-svn: 348969
Thunks that return member pointers via sret are broken due to using temporary
storage for the return value on the stack and then passing that pointer to a
tail call, violating the rule that a tail call can't access allocas in the
caller (see bug).
Since r90526, we put aggregate return values directly in the sret slot, but
this doesn't apply to member pointers which are considered scalar.
Unless I'm missing something subtle, we should be able to always use the sret
slot directly for indirect return values.
Differential revision: https://reviews.llvm.org/D55371
llvm-svn: 348569
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
As suggested by Richard Smith, and initially put up for review here:
https://reviews.llvm.org/D53341, this patch removes a hack that was used
to ensure that proper target-feature lists were used when emitting
cpu-dispatch (and eventually, target-clones) implementations. As a part
of this, the GlobalDecl object is proliferated to a bunch more
locations.
Originally, this was put up for review (see above) to get acceptance on
the approach, though discussion with Richard in San Diego showed he
approved of the approach taken here. Thus, I believe this is acceptable
for Review-After-commit
Differential Revision: https://reviews.llvm.org/D53341
Change-Id: I0a0bd673340d334d93feac789d653e03d9f6b1d5
llvm-svn: 346757
Similar to how ICC handles CPU-Dispatch on Windows, this patch uses the
resolver function directly to forward the call to the proper function.
This is not nearly as efficient as IFuncs of course, but is still quite
useful for large functions specifically developed for certain
processors.
This is unfortunately still limited to x86, since it depends on
__builtin_cpu_supports and __builtin_cpu_is, which are x86 builtins.
The naming for the resolver/forwarding function for cpu-dispatch was
taken from ICC's implementation, which uses the unmodified name for this
(no mangling additions). This is possible, since cpu-dispatch uses '.A'
for the 'default' version.
In 'target' multiversioning, this function keeps the '.resolver'
extension in order to keep the default function keeping the default
mangling.
Change-Id: I4731555a39be26c7ad59a2d8fda6fa1a50f73284
Differential Revision: https://reviews.llvm.org/D53586
llvm-svn: 345298
The X86 backend will need to see the attribute to make decisions. If it isn't present the backend will have to assume large vectors may be present.
llvm-svn: 345237
This is a continuation of my patches to inform the X86 backend about what the largest IR types are in the function so that we can restrict the backend type legalizer to prevent 512-bit vectors on SKX when -mprefer-vector-width=256 is specified if no explicit 512 bit vectors were specified by the user.
This patch updates the vector width based on the argument and return types of the current function and from the types of any functions it calls. This is intended to make sure the backend type legalizer doesn't disturb any types that are required for ABI.
Differential Revision: https://reviews.llvm.org/D52441
llvm-svn: 345168
Summary:
Some lines have a hit counter where they should not have one.
Cleanup stuff is located to the last line of the body which is most of the time a '}'.
And Exception stuff is added at the beginning of a function and at the end (represented by '{' and '}').
So in such cases, the DebugLoc used in GCOVProfiling.cpp must be marked as not covered.
This patch is a followup of https://reviews.llvm.org/D49915.
Tests in projects/compiler_rt are fixed by: https://reviews.llvm.org/D49917
Reviewers: marco-c, davidxl
Reviewed By: marco-c
Subscribers: dblaikie, cfe-commits, sylvestre.ledru
Differential Revision: https://reviews.llvm.org/D49916
llvm-svn: 342717
Summary:
Before this change, we only emit the XRay attributes in LLVM IR when the
-fxray-instrument flag is provided. This may cause issues with thinlto
when the final binary is being built/linked with -fxray-instrument, and
the constitutent LLVM IR gets re-lowered with xray instrumentation.
With this change, we can honour the "never-instrument "attributes
provided in the source code and preserve those in the IR. This way, even
in thinlto builds, we retain the attributes which say whether functions
should never be XRay instrumented.
This change addresses llvm.org/PR38922.
Reviewers: mboerger, eizan
Subscribers: mehdi_amini, dexonsmith, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D52015
llvm-svn: 342200
Previously, both types (plus the future target-clones) of
multiversioning had a separate ResolverOption structure and emission
function. This patch combines the two, at the expense of a slightly
more expensive sorting function.
llvm-svn: 342152
Boilerplate code for using KMSAN instrumentation in Clang.
We add a new command line flag, -fsanitize=kernel-memory, with a
corresponding SanitizerKind::KernelMemory, which, along with
SanitizerKind::Memory, maps to the memory_sanitizer feature.
KMSAN is only supported on x86_64 Linux.
It's incompatible with other sanitizers, but supports code coverage
instrumentation.
llvm-svn: 341641
If using a custom stack alignment, one is expected to make sure
that all callers provide such alignment, or realign the stack in
all entry points (and callbacks).
Despite this, the compiler can assume that the main function will
need realignment in these cases, since the startup routines calling
the main function most probably won't provide the custom alignment.
This matches what GCC does in similar cases; if compiling with
-mincoming-stack-boundary=X -mpreferred-stack-boundary=X, GCC normally
assumes such alignment on entry to a function, but specifically for
the main function still does realignment.
Differential Revision: https://reviews.llvm.org/D51026
llvm-svn: 340334
Clang generates copy and dispose helper functions for each block literal
on the stack. Often these functions are equivalent for different blocks.
This commit makes changes to merge equivalent copy and dispose helper
functions and reduce code size.
To enable merging equivalent copy/dispose functions, the captured object
infomation is encoded into the helper function name. This allows IRGen
to check whether an equivalent helper function has already been emitted
and reuse the function instead of generating a new helper function
whenever a block is defined. In addition, the helper functions are
marked as linkonce_odr to enable merging helper functions that have the
same name across translation units and marked as unnamed_addr to enable
the linker's deduplication pass to merge functions that have different
names but the same content.
rdar://problem/42640608
Differential Revision: https://reviews.llvm.org/D50152
llvm-svn: 339438
As documented here: https://software.intel.com/en-us/node/682969 and
https://software.intel.com/en-us/node/523346. cpu_dispatch multiversioning
is an ICC feature that provides for function multiversioning.
This feature is implemented with two attributes: First, cpu_specific,
which specifies the individual function versions. Second, cpu_dispatch,
which specifies the location of the resolver function and the list of
resolvable functions.
This is valuable since it provides a mechanism where the resolver's TU
can be specified in one location, and the individual implementions
each in their own translation units.
The goal of this patch is to be source-compatible with ICC, so this
implementation diverges from the ICC implementation in a few ways:
1- Linux x86/64 only: This implementation uses ifuncs in order to
properly dispatch functions. This is is a valuable performance benefit
over the ICC implementation. A future patch will be provided to enable
this feature on Windows, but it will obviously more closely fit ICC's
implementation.
2- CPU Identification functions: ICC uses a set of custom functions to identify
the feature list of the host processor. This patch uses the cpu_supports
functionality in order to better align with 'target' multiversioning.
1- cpu_dispatch function def/decl: ICC's cpu_dispatch requires that the function
marked cpu_dispatch be an empty definition. This patch supports that as well,
however declarations are also permitted, since the linker will solve the
issue of multiple emissions.
Differential Revision: https://reviews.llvm.org/D47474
llvm-svn: 337552
The member init list for the sole constructor for CodeGenFunction
has gotten out of hand, so this patch moves the non-parameter-dependent
initializations into the member value inits.
Note: This is what was intended to be committed in r336726
llvm-svn: 336729
The member init list for the sole constructor for CodeGenFunction
has gotten out of hand, so this patch moves the non-parameter-dependent
initializations into the member value inits.
llvm-svn: 336726
This is part of an ongoing attempt at making 512 bit vectors illegal in the X86 backend type legalizer due to CPU frequency penalties associated with wide vectors on Skylake Server CPUs. We want the loop vectorizer to be able to emit IR containing wide vectors as intermediate operations in vectorized code and allow these wide vectors to be legalized to 256 bits by the X86 backend even though we are targetting a CPU that supports 512 bit vectors. This is similar to what happens with an AVX2 CPU, the vectorizer can emit wide vectors and the backend will split them. We want this splitting behavior, but still be able to use new Skylake instructions that work on 256-bit vectors and support things like masking and gather/scatter.
Of course if the user uses explicit vector code in their source code we need to not split those operations. Especially if they have used any of the 512-bit vector intrinsics from immintrin.h. And we need to make it so that merely using the intrinsics produces the expected code in order to be backwards compatible.
To support this goal, this patch adds a new IR function attribute "min-legal-vector-width" that can indicate the need for a minimum vector width to be legal in the backend. We need to ensure this attribute is set to the largest vector width needed by any intrinsics from immintrin.h that the function uses. The inliner will be reponsible for merging this attribute when a function is inlined. We may also need a way to limit inlining in the future as well, but we can discuss that in the future.
To make things more complicated, there are two different ways intrinsics are implemented in immintrin.h. Either as an always_inline function containing calls to builtins(can be target specific or target independent) or vector extension code. Or as a macro wrapper around a taget specific builtin. I believe I've removed all cases where the macro was around a target independent builtin.
To support the always_inline function case this patch adds attribute((min_vector_width(128))) that can be used to tag these functions with their vector width. All x86 intrinsic functions that operate on vectors have been tagged with this attribute.
To support the macro case, all x86 specific builtins have also been tagged with the vector width that they require. Use of any builtin with this property will implicitly increase the min_vector_width of the function that calls it. I've done this as a new property in the attribute string for the builtin rather than basing it on the type string so that we can opt into it on a per builtin basis and avoid any impact to target independent builtins.
There will be future work to support vectors passed as function arguments and supporting inline assembly. And whatever else we can find that isn't covered by this patch.
Special thanks to Chandler who suggested this direction and reviewed a preview version of this patch. And thanks to Eric Christopher who has had many conversations with me about this issue.
Differential Revision: https://reviews.llvm.org/D48617
llvm-svn: 336583
Summary:
When requirement imposed by __target__ attributes on functions
are not satisfied, prefer printing those requirements, which
are explicitly mentioned in the attributes.
This makes such messages more useful, e.g. printing avx512f instead of avx2
in the following scenario:
```
$ cat foo.c
static inline void __attribute__((__always_inline__, __target__("avx512f")))
x(void)
{
}
int main(void)
{
x();
}
$ clang foo.c
foo.c:7:2: error: always_inline function 'x' requires target feature 'avx2', but would be inlined into function 'main' that is compiled without support for 'avx2'
x();
^
1 error generated.
```
bugzilla: https://bugs.llvm.org/show_bug.cgi?id=37338
Reviewers: craig.topper, echristo, dblaikie
Reviewed By: craig.topper, echristo
Differential Revision: https://reviews.llvm.org/D46541
llvm-svn: 334174
Summary:
A clang builtin for xray typed events. Differs from
__xray_customevent(...) by the presence of a type tag that is vended by
compiler-rt in typical usage. This allows xray handlers to expand logged
events with their type description and plugins to process traced events
based on type.
This change depends on D45633 for the intrinsic definition.
Reviewers: dberris, pelikan, rnk, eizan
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D45716
llvm-svn: 330220
When emitting CodeView debug information, compiler-generated thunk routines
should be emitted using S_THUNK32 symbols instead of S_GPROC32_ID symbols so
Visual Studio can properly step into the user code. This initial support only
handles standard thunk ordinals.
Differential Revision: https://reviews.llvm.org/D43838
llvm-svn: 330132
Summary:
This change addresses http://llvm.org/PR36926 by allowing users to pick
which instrumentation bundles to use, when instrumenting with XRay. In
particular, the flag `-fxray-instrumentation-bundle=` has four valid
values:
- `all`: the default, emits all instrumentation kinds
- `none`: equivalent to -fnoxray-instrument
- `function`: emits the entry/exit instrumentation
- `custom`: emits the custom event instrumentation
These can be combined either as comma-separated values, or as
repeated flag values.
Reviewers: echristo, kpw, eizan, pelikan
Reviewed By: pelikan
Subscribers: mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D44970
llvm-svn: 329985
Summary:
Right now to disable -fsanitize=kernel-address instrumentation, one needs to use no_sanitize("kernel-address"). Make either no_sanitize("address") or no_sanitize("kernel-address") disable both ASan and KASan instrumentation. Also remove redundant test.
Patch by Andrey Konovalov
Reviewers: eugenis, kcc, glider, dvyukov, vitalybuka
Reviewed By: eugenis, vitalybuka
Differential Revision: https://reviews.llvm.org/D44981
llvm-svn: 329612
Summary:
Add support for the -fsanitize=shadow-call-stack flag which causes clang
to add ShadowCallStack attribute to functions compiled with that flag
enabled.
Reviewers: pcc, kcc
Reviewed By: pcc, kcc
Subscribers: cryptoad, cfe-commits, kcc
Differential Revision: https://reviews.llvm.org/D44801
llvm-svn: 329122
Summary:
Disables certain CMP optimizations to improve fuzzing signal under -O1
and -O2.
Switches all fuzzer tests to -O2 except for a few leak tests where the
leak is optimized out under -O2.
Reviewers: kcc, vitalybuka
Reviewed By: vitalybuka
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D44798
llvm-svn: 328384
Summary:
Currently only calls to mcount were suppressed with
no_instrument_function attribute.
Linux kernel requires that calls to fentry should also not be
generated.
This is an extended fix for PR PR33515.
Reviewers: hfinkel, rengolin, srhines, rnk, rsmith, rjmccall, hans
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D43995
llvm-svn: 326639
So I wrote a clang-tidy check to lint out redundant `isa`, `cast`, and
`dyn_cast`s for fun. This is a portion of what it found for clang; I
plan to do similar cleanups in LLVM and other subprojects when I find
time.
Because of the volume of changes, I explicitly avoided making any change
that wasn't highly local and obviously correct to me (e.g. we still have
a number of foo(cast<Bar>(baz)) that I didn't touch, since overloading
is a thing and the cast<Bar> did actually change the type -- just up the
class hierarchy).
I also tried to leave the types we were cast<>ing to somewhere nearby,
in cases where it wasn't locally obvious what we were dealing with
before.
llvm-svn: 326416
Summary:
This patch enables debugging of C99 VLA types by generating more precise
LLVM Debug metadata, using the extended DISubrange 'count' field that
takes a DIVariable.
This should implement:
Bug 30553: Debug info generated for arrays is not what GDB expects (not as good as GCC's)
https://bugs.llvm.org/show_bug.cgi?id=30553
Reviewers: echristo, aprantl, dexonsmith, clayborg, pcc, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: jholewinski, schweitz, davide, fhahn, JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D41698
llvm-svn: 323952
This alignment can be less than 4 on certain embedded targets, which may
not even be able to deal with 4-byte alignment on the stack.
Patch by Jacob Young!
llvm-svn: 322406
Cf-protection is a target independent flag that instructs the back-end to instrument control flow mechanisms like: Branch, Return, etc.
For example in X86 this flag will be used to instrument Indirect Branch Tracking instructions.
Differential Revision: https://reviews.llvm.org/D40478
Change-Id: I5126e766c0e6b84118cae0ee8a20fe78cc373dea
llvm-svn: 322063
GCC's attribute 'target', in addition to being an optimization hint,
also allows function multiversioning. We currently have the former
implemented, this is the latter's implementation.
This works by enabling functions with the same name/signature to coexist,
so that they can all be emitted. Multiversion state is stored in the
FunctionDecl itself, and SemaDecl manages the definitions.
Note that it ends up having to permit redefinition of functions so
that they can all be emitted. Additionally, all versions of the function
must be emitted, so this also manages that.
Note that this includes some additional rules that GCC does not, since
defining something as a MultiVersion function after a usage has been made illegal.
The only 'history rewriting' that happens is if a function is emitted before
it has been converted to a multiversion'ed function, at which point its name
needs to be changed.
Function templates and virtual functions are NOT yet supported (not supported
in GCC either).
Additionally, constructors/destructors are disallowed, but the former is
planned.
llvm-svn: 322028
As discussed in the mail thread <https://groups.google.com/a/isocpp.org/forum/
#!topic/std-discussion/T64_dW3WKUk> "Calling noexcept function throug non-
noexcept pointer is undefined behavior?", such a call should not be UB.
However, Clang currently warns about it.
This change removes exception specifications from the function types recorded
for -fsanitize=function, both in the functions themselves and at the call sites.
That means that calling a non-noexcept function through a noexcept pointer will
also not be flagged as UB. In the review of this change, that was deemed
acceptable, at least for now. (See the "TODO" in compiler-rt
test/ubsan/TestCases/TypeCheck/Function/function.cpp.)
To remove exception specifications from types, the existing internal
ASTContext::getFunctionTypeWithExceptionSpec was made public, and some places
otherwise unrelated to this change have been adapted to call it, too.
This is the cfe part of a patch covering both cfe and compiler-rt.
Differential Revision: https://reviews.llvm.org/D40720
llvm-svn: 321859
There are 2 parts to getting the -fassociative-math command-line flag translated to LLVM FMF:
1. In the driver/frontend, we accept the flag and its 'no' inverse and deal with the
interactions with other flags like -ffast-math -fno-signed-zeros -fno-trapping-math.
This was mostly already done - we just need to translate the flag as a codegen option.
The test file is complicated because there are many potential combinations of flags here.
Note that we are matching gcc's behavior that requires 'nsz' and no-trapping-math.
2. In codegen, we map the codegen option to FMF in the IR builder. This is simple code and
corresponding test.
For the motivating example from PR27372:
float foo(float a, float x) { return ((a + x) - x); }
$ ./clang -O2 27372.c -S -o - -ffast-math -fno-associative-math -emit-llvm | egrep 'fadd|fsub'
%add = fadd nnan ninf nsz arcp contract float %0, %1
%sub = fsub nnan ninf nsz arcp contract float %add, %2
So 'reassoc' is off as expected (and so is the new 'afn' but that's a different patch).
This case now works as expected end-to-end although the underlying logic is still wrong:
$ ./clang -O2 27372.c -S -o - -ffast-math -fno-associative-math | grep xmm
addss %xmm1, %xmm0
subss %xmm1, %xmm0
We're not done because the case where 'reassoc' is set is ignored by optimizer passes. Example:
$ ./clang -O2 27372.c -S -o - -fassociative-math -fno-signed-zeros -fno-trapping-math -emit-llvm | grep fadd
%add = fadd reassoc float %0, %1
$ ./clang -O2 27372.c -S -o - -fassociative-math -fno-signed-zeros -fno-trapping-math | grep xmm
addss %xmm1, %xmm0
subss %xmm1, %xmm0
Differential Revision: https://reviews.llvm.org/D39812
llvm-svn: 320920
Previously the attributes were emitted only for function definitions.
Patch adds emission of the attributes for function declarations.
llvm-svn: 320826
Summary:
The -fxray-always-emit-customevents flag instructs clang to always emit
the LLVM IR for calls to the `__xray_customevent(...)` built-in
function. The default behaviour currently respects whether the function
has an `[[clang::xray_never_instrument]]` attribute, and thus not lower
the appropriate IR code for the custom event built-in.
This change allows users calling through to the
`__xray_customevent(...)` built-in to always see those calls lowered to
the corresponding LLVM IR to lay down instrumentation points for these
custom event calls.
Using this flag enables us to emit even just the user-provided custom
events even while never instrumenting the start/end of the function
where they appear. This is useful in cases where "phase markers" using
__xray_customevent(...) can have very few instructions, must never be
instrumented when entered/exited.
Reviewers: rnk, dblaikie, kpw
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D40601
llvm-svn: 319388
This is an instrumentation flag that's similar to
-finstrument-functions, but it only inserts calls on function entry, the
calls are inserted post-inlining, and they don't take any arugments.
This is intended for users who want to instrument function entry with
minimal overhead.
(-pg would be another alternative, but forces frame pointer emission and
affects link flags, so is probably best left alone to be used for
generating gcov data.)
Differential revision: https://reviews.llvm.org/D40276
llvm-svn: 318785
This updates -mcount to use the new attribute names (LLVM r318195), and
switches over -finstrument-functions to also use these attributes rather
than inserting instrumentation in the frontend.
It also adds a new flag, -finstrument-functions-after-inlining, which
makes the cygprofile instrumentation get inserted after inlining rather
than before.
Differential Revision: https://reviews.llvm.org/D39331
llvm-svn: 318199
Summary:
We don't want to store cleanup dest slot saved into the coroutine frame (as some of the cleanup code may
access them after coroutine frame destroyed).
This is an alternative to https://reviews.llvm.org/D37093
It is possible to do this for all functions, but, cursory check showed that in -O0, we get slightly longer function (by 1-3 instructions), thus, we are only limiting cleanup.dest.slot elimination to coroutines.
Reviewers: rjmccall, hfinkel, eric_niebler
Reviewed By: eric_niebler
Subscribers: EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D39768
llvm-svn: 317981
This patch fixes various places in clang to propagate may-alias
TBAA access descriptors during construction of lvalues, thus
eliminating the need for the LValueBaseInfo::MayAlias flag.
This is part of D38126 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D39008
llvm-svn: 316988
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
The function sanitizer only checks indirect calls through function
pointers. This excludes all non-static member functions (constructor
calls, calls through thunks, etc. all use a separate code path). Don't
emit function signatures for functions that won't be checked.
Apart from cutting down on code size, this should fix a regression on
Linux caused by r313096. For context, see the mailing list discussion:
r313096 - [ubsan] Function Sanitizer: Don't require writable text segments
Testing: check-clang, check-ubsan
Differential Revision: https://reviews.llvm.org/D38913
llvm-svn: 315786
This patch enables explicit generation of TBAA information in all
cases where LValue base info is propagated or constructed in
non-trivial ways. Eventually, we will consider each of these
cases to make sure the TBAA information is correct and not too
conservative. For now, we just fall back to generating TBAA info
from the access type.
This patch should not bring in any functional changes.
This is part of D38126 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D38733
llvm-svn: 315575
This patch is an attempt to clarify and simplify generation and
propagation of TBAA information. The idea is to pack all values
that describe a memory access, namely, base type, access type and
offset, into a single structure. This is supposed to make further
changes, such as adding support for unions and array members,
easier to prepare and review.
DecorateInstructionWithTBAA() is no more responsible for
converting types to tags. These implicit conversions not only
complicate reading the code, but also suggest assigning scalar
access tags while we generally prefer full-size struct-path tags.
TBAAPathTag is replaced with TBAAAccessInfo; the latter is now
the type of the keys of the cache map that translates access
descriptors to metadata nodes.
Fixed a bug with writing to a wrong map in
getTBAABaseTypeMetadata() (former getTBAAStructTypeInfo()).
We now check for valid base access types every time we
dereference a field. The original code only checks the top-level
base type. See isValidBaseType() / isTBAAPathStruct() calls.
Some entities have been renamed to sound more adequate and less
confusing/misleading in presence of path-aware TBAA information.
Now we do not lookup twice for the same cache entry in
getAccessTagInfo().
Refined relevant comments and descriptions.
Differential Revision: https://reviews.llvm.org/D37826
llvm-svn: 315048
This patch makes it possible to produce access tags in a uniform
manner regardless whether the resulting tag will be a scalar or a
struct-path one. getAccessTagInfo() now takes care of the actual
translation of access descriptors to tags and can handle all
kinds of accesses. Facilities that specific to scalar accesses
are eliminated.
Some more details:
* DecorateInstructionWithTBAA() is not responsible for conversion
of types to access tags anymore. Instead, it takes an access
descriptor (TBAAAccessInfo) and generates corresponding access
tag from it.
* getTBAAInfoForVTablePtr() reworked to
getTBAAVTablePtrAccessInfo() that now returns the
virtual-pointer access descriptor and not the virtual-point
type metadata.
* Added function getTBAAMayAliasAccessInfo() that returns the
descriptor for may-alias accesses.
* getTBAAStructTagInfo() renamed to getTBAAAccessTagInfo() as now
it is the only way to generate access tag by a given access
descriptor. It is capable of producing both scalar and
struct-path tags, depending on options and availability of the
base access type. getTBAAScalarTagInfo() and its cache
ScalarTagMetadataCache are eliminated.
* Now that we do not need to care about whether the resulting
access tag should be a scalar or struct-path one,
getTBAAStructTypeInfo() is renamed to getBaseTypeInfo().
* Added function getTBAAAccessInfo() that constructs access
descriptor by a given QualType access type.
This is part of D37826 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D38503
llvm-svn: 314977
This patch fixes misleading names of entities related to getting,
setting and generation of TBAA access type descriptors.
This is effectively an attempt to provide a review for D37826 by
breaking it into smaller pieces.
Differential Revision: https://reviews.llvm.org/D38404
llvm-svn: 314657
Summary:
This is the follow-up patch to D37924.
This change refactors clang to use the the newly added section headers
in SpecialCaseList to specify which sanitizers blacklists entries
should apply to, like so:
[cfi-vcall]
fun:*bad_vcall*
[cfi-derived-cast|cfi-unrelated-cast]
fun:*bad_cast*
The SanitizerSpecialCaseList class has been added to allow querying by
SanitizerMask, and SanitizerBlacklist and its downstream users have been
updated to provide that information. Old blacklists not using sections
will continue to function identically since the blacklist entries will
be placed into a '[*]' section by default matching against all
sanitizers.
Reviewers: pcc, kcc, eugenis, vsk
Reviewed By: eugenis
Subscribers: dberris, cfe-commits, mgorny
Differential Revision: https://reviews.llvm.org/D37925
llvm-svn: 314171
This change will make it possible to use -fsanitize=function on Darwin and
possibly on other platforms. It fixes an issue with the way RTTI is stored into
function prologue data.
On Darwin, addresses stored in prologue data can't require run-time fixups and
must be PC-relative. Run-time fixups are undesirable because they necessitate
writable text segments, which can lead to security issues. And absolute
addresses are undesirable because they break PIE mode.
The fix is to create a private global which points to the RTTI, and then to
encode a PC-relative reference to the global into prologue data.
Differential Revision: https://reviews.llvm.org/D37597
llvm-svn: 313096
Summary: With accurate sample profile, we can do more aggressive size optimization. For some size-critical application, this can reduce the text size by 20%
Reviewers: davidxl, rsmith
Reviewed By: davidxl, rsmith
Subscribers: mehdi_amini, eraman, sanjoy, cfe-commits
Differential Revision: https://reviews.llvm.org/D37091
llvm-svn: 311707
Do not sanitize the 'this' pointer of a member call operator for a lambda with
no capture-default, since that call operator can legitimately be called with a
null this pointer from the static invoker function. Any actual call with a null
this pointer should still be caught in the caller (if it is being sanitized).
This reinstates r311589 (reverted in r311680) with the above fix.
llvm-svn: 311695