If we promote the ABS and then Expand in LegalizeDAG, then both the
sra and the xor will have their inputs sign extended. This generates
extra code on RISCV which lacks an i8 or i16 sign extend instructon.
If we expand during type legalization, then only the sra will get its
input sign extended. RISCV is able to combine this with the sra by
doing a shift left followed by an sra.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D121664
RISCV strong prefers i32 values be sign extended to i64. This combine
was always zero extending the constant using APInt methods.
This adjusts the code so that it calls getNode using ISD::ANY_EXTEND instead.
getNode will call TLI.isSExtCheaperThanZExt to decide how to handle
the constant.
Tests were copied from D121598 where I noticed that we were creating
constants that were hard to materialize.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D121650
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121327
The existing volatile checks only handle aliasing hazards between stores,
but that isn't enough since by that point volatile stores may have already
been added to the current candidate group.
Discussed extensively on D98232. The functionality introduced in D35816
never worked correctly. In D98232, it was fixed, but, as it was
introducing a large compile-time regression, and the value of the
original patch was called into doubt, we disabled it by default
everywhere. A year later, it appears that caused no grief, so it seems
safe to remove the disabled code.
This should be accompanied by re-opening bug 26810.
Differential Revision: https://reviews.llvm.org/D121128
We do not have general reassociation here (and probably
do not need it), but I noticed these were missing in
patches/tests motivated by D111530, so we can at
least handle the simplest patterns.
The VE test diff looks correct, but we miss that
pattern in IR currently:
https://alive2.llvm.org/ce/z/u66_PM
`DIE::getUnitDie` looks up parent DIE until compile unit or type unit is found. However for skeleton CU with debug fission, we would have DW_TAG_skeleton_unit instead of DW_TAG_compile_unit as top level DIE.
This change fixes the look up so we can get DW_TAG_skeleton_unit as UnitDie for skeleton CU.
Differential Revision: https://reviews.llvm.org/D120610
This patch introduces two new experimental IR intrinsics and SDAG nodes
to represent vector strided loads and stores.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D114884
SDNodes with different target flags may now be folded together
rightfully resulting in the assertion in the refineAlignment.
Folding nodes with different target flags may result in the
wrong load instructions produced at least on the AMDGPU.
Fixes: SWDEV-326805
Differential Revision: https://reviews.llvm.org/D121335
This is another fold generalized from D111530.
We can find a common source for a rotate operation hidden inside an 'or':
https://alive2.llvm.org/ce/z/9pV8hn
Deciding when this is profitable vs. a funnel-shift is tricky, but this
does not show any regressions: if a target has a rotate but it does not
have a funnel-shift, then try to form the rotate here. That is why we
don't have x86 test diffs for the scalar tests that are duplicated from
AArch64 ( 74a65e3834 ) - shld/shrd are available. That also makes it
difficult to show vector diffs - the only case where I found a diff was
on x86 AVX512 or XOP with i64 elements.
There's an additional check for a legal type to avoid a problem seen
with x86-32 where we form a 64-bit rotate but then it gets split
inefficiently. We might avoid that by adding more rotate folds, but
I didn't check to see what is missing on that path.
This gets most of the motivating patterns for AArch64 / ARM that are in
D111530.
We still need a couple of enhancements to setcc pattern matching with
rotate/funnel-shift to get the rest.
Differential Revision: https://reviews.llvm.org/D120933
This was disabled in 2acea2786b as a
work-around for Issue #31491. I've reduced the test case from that bug
and confirmed that it is now fixed.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D120866
This relands commit 7313474319.
It failed on Windows/Mac because `-fjmc` is only checked for ELF targets.
Check the flag unconditionally instead and issue a warning for non-ELF targets.
Previously we used sra+add+xor if ADDCARRY is supported. This changes
to sra+xor+sub is SUBCARRY is available.
This is consistent with the recent change to the default expansion
in LegalizeDAG.
Differential Revision: https://reviews.llvm.org/D121039
The motivation is to enable the MSVC-style JMC instrumentation usable by a ELF-based
debugger. Since there is no prior experience implementing JMC feature for ELF-based
debugger, it might be better to just reuse existing MSVC-style JMC instrumentation.
For debuggers that support both ELF&COFF (like lldb), the JMC implementation might
be shared between ELF&COFF. If this is found to inadequate, it is pretty low-cost
switching to alternatives.
Implementation:
- The '-fjmc' is already a driver and cc1 flag. Wire it up for ELF in the driver.
- Refactor the JMC instrumentation pass a little bit.
- The ELF handling is different from MSVC in two places:
* the flag section name is ".just.my.code" instead of ".msvcjmc"
* the way default function is provided: MSVC uses /alternatename; ELF uses weak function.
Based on D118428.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D119910
When inserting undef into buildvectors created from shuffles of
buildvectors, we convert elements to the largest needed type. This had
the effect of converting undef into 0, which isn't needed as the
buildvector implicitly truncates and trunc(zext(undef)) == undef.
Differential Revision: https://reviews.llvm.org/D121002
This extends acb96ffd14 to 'and' and 'xor' opcodes.
Copying from that message:
LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
https://alive2.llvm.org/ce/z/QmR9rR
This is a reassociation + factoring fold. The common shift operation is moved
after a bitwise logic op on 2 input operands.
We get simpler cases of these patterns in IR, but I suspect we would miss all
of these exact tests in IR too. We also handle the simpler form of this plus
several other folds in DAGCombiner::hoistLogicOpWithSameOpcodeHands().
When lowering LLVM-IR to instruction referencing stuff, if a value is
defined by a COPY, we try and follow the register definitions back to where
the value was defined, and build an instruction reference to that
instruction. In a few scenarios (such as arguments), this isn't possible.
I added some assertions to catch cases that weren't explicitly whitelisted.
Over the course of a few months, several more scenarios have cropped up,
the lastest is the llvm.read_register intrinsic, which lets LLVM-IR read an
arbitary register at any point. In the face of this, there's little point
in validating whether debug-info reads a register in an expected scenario.
Thus: this patch just deletes those assertions, and adds a regression test
to check that something is done with the llvm.read_register intrinsic.
Fixes#54190
Differential Revision: https://reviews.llvm.org/D121001
When triggered during operation legalisation the affected combine
generates a splat_vector that when custom lowered for SVE fixed
length code generation, results in the original precombine sequence
and thus we enter a legalisation/combine hang.
NOTE: The patch contains no tests because I observed this issue
only when combined with other work that might never become public.
The current way AArch64 lowers ISD::SPLAT_VECTOR meant a specific
test was not possible so I'm hoping the DAGCombiner fix can be seen
as obvious. The AArch64ISelLowering change is requirted to maintain
existing code quality.
Differential Revision: https://reviews.llvm.org/D120735
growRegion() does not scale in code with BBs with a very large number of edges.
In such code growRegion() becomes a compile-time bottleneck, consuming 60% of
the total compilation time.
This patch adds a limit to the complexity of growRegion() by incrementing a counter
in each iteration. We bail out once the limit is reached.
Differential Revision: https://reviews.llvm.org/D120752
https://alive2.llvm.org/ce/z/mJP7XP
This can be viewed as expanding the compare into and/or-of-compares:
https://alive2.llvm.org/ce/z/bkZYWE
followed by reduction of each compare.
This could be extended in several ways:
1. There's a (X & Y) == -1 sibling.
2. We can recurse through more than 1 'or'.
3. The fold could be generalized beyond rotates - any operation that
only changes the order of bits (bswap, bitreverse).
This is a transform noted in D111530.
Instead of emitting 0 > Hi, emit Hi < 0. If Hi needs to be expanded again
this will allow the special case for sign bit tests in ExpandIntOp_SETCC
to trigger.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D120761
Also, changes how the CSR loop is indexed, which should avoid bugs like the one fixed by rG4a57bb5a3b74bdad9b0518009a7d7ac7ca2ac650
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D120668
This is an alternative to D120330, which disables MachineSink for
functions with irreducible cycles entirely. This avoids both the
correctness problem, and ensures we don't perform non-profitable
sinks into cycles. At the same time, it may also disable
profitable sinks in the same function. This can be made more
precise by using MachineCycleInfo in the future.
Fixes https://github.com/llvm/llvm-project/issues/53990.
Differential Revision: https://reviews.llvm.org/D120800
Currently we only check for splat shuffles, this extends it to see if the source operand is a splat across the demanded elts based upon the shuffle mask
This patch adds support for recognising vector splats by peeking through bitcasts to vectors with smaller element types - if all the offset subelements are splats then the bitcasted vector is a splat as well.
We don't have great coverage for isSplatValue so I've made this pretty specific to the use case I'm trying to fix - regressions in some vXi64 vector shift by splat cases that 32-bit x86 doesn't recognise because the shift amount buildvector has been type legalised to v2Xi32.
We can add further support (floats, bitcast from larger element types, undef elements) when we have actual test coverage.
Differential Revision: https://reviews.llvm.org/D120553
This wraps up from D119053. The 2 headers are moved as described,
fixed file headers and include guards, updated all files where the old
paths were detected (simple grep through the repo), and `clang-format`-ed it all.
Differential Revision: https://reviews.llvm.org/D119876