This ELF note is aarch64 and Android-specific. It specifies to the
dynamic loader that specific work should be scheduled to enable MTE
protection of stack and heap regions.
Current synthesis of the ".note.android.memtag" ELF note is done in the
Android build system. We'd like to move that to the compiler, and this
is the first step.
Reviewed By: MaskRay, jhenderson
Differential Revision: https://reviews.llvm.org/D119381
Instead of the GNU extension `SHF_GNU_RETAIN`, Solaris provides equivalent
functionality with `SHF_SUNW_NODISCARD`. This patch implements the necessary
support.
Tested on `sparcv9-sun-solaris2.11`, `amd64-pc-solaris2.11`, and
`x86_64-pc-linux-gnu`.
Differential Revision: https://reviews.llvm.org/D107955
Conceptually, the new encoding emits the offsets and sizes as label differences between each two consecutive basic block begin and end label. When decoding, the offsets must be aggregated along with basic block sizes to calculate the final relative-to-function offsets of basic blocks.
This encoding uses smaller values compared to the existing one (offsets relative to function symbol).
Smaller values tend to occupy fewer bytes in ULEB128 encoding. As a result, we get about 25% reduction
in the size of the bb-address-map section (reduction from about 9MB to 7MB).
Reviewed By: tmsriram, jhenderson
Differential Revision: https://reviews.llvm.org/D106421
This patch adds necessary definitions for LoongArch ELF files, including
relocation types. Also adds initial support to ELFYaml, llvm-objdump,
and llvm-readobj in order to work with LoongArch ELFs.
Differential revision: https://reviews.llvm.org/D115859
Summary:
Add code object v5 support (deafult is still v4)
Generate metadata for implicit kernel args for the new ABI
Set the metadata version to be 1.2
Reviewers:
t-tye, b-sumner, arsenm, and bcahoon
Fixes:
SWDEV-307188, SWDEV-307189
Differential Revision:
https://reviews.llvm.org/D118272
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
A few header removal, some forward declarations. As usual, this can
break your build due to false dependencies, the most notable change are:
- "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" no longer includes "llvm/BinaryFormat/MsgPackDocument.h"
The impact on generated preprocessed lines for LLVMBinaryFormat is
pretty nice:
$ clang++ -E -Iinclude -I../llvm/include ../llvm/lib/BinaryFormat/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before this patch: 705281
after this patch: 751456
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup
LLVM Programmer’s Manual strongly discourages the use of `std::vector<bool>` and suggests `llvm::BitVector` as a possible replacement.
This patch does just that for llvm.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D117121
Checking ELFType == ELF::ET_CORE first skips string comparison for the
majority of cases.
Suggested by Fangrui Song in D114635 for a similar construct.
Adds JSONScopedPrinter to llvm-readelf. It includes an empty
JSONELFDumper class which will be used to override any LLVMELFDumper
methods which utilize startLine() which JSONScopedPrinter cannot
provide.
This introduces a change where calls to llvm-readelf with non-ELF object
files that specify --elf-output-style=GNU will now print file summary
information where it previously didn't.
Fixes previous Windows test failure which occured due to JSON escaping
of '\' by not relying on LIT substitution.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D114225
Adds JSONScopedPrinter to llvm-readelf. It includes an empty
JSONELFDumper class which will be used to override any LLVMELFDumper
methods which utilize startLine() which JSONScopedPrinter cannot
provide.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D114225
Summary:
This is a NFC patch moving the GNUELFDumper<ELFT>::printEnum()
function from ELFDumper into ScopedPrinter.h for reuse.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D114840
The only binary-format-related field in the BBAddrMap structure is the function address (`Addr`), which will use uint64_t in 64B format and uint32_t in 32B format. This patch changes it to use uint64_t in both formats.
This allows non-templated use of the struct, at the expense of a marginal additional size overhead for the 32-bit format. The size of the BB address map section does not change.
Differential Revision: https://reviews.llvm.org/D112679
Notes generated in OpenBSD core files provide additional information
about the kernel state and CPU registers. These notes are described
in core.5, which can be viewed here: https://man.openbsd.org/core.5
Differential Revision: https://reviews.llvm.org/D111966
By default, such a non-template variable of non-volatile const-qualified type
having namespace-scope has internal linkage ([basic.link]), so no need for `static`.
The MSP430 ABI supports build attributes for specifying
the ISA, code model, data model and enum size in ELF object files.
Differential Revision: https://reviews.llvm.org/D107969
The current implementation of printAttributes makes it fiddly to extend
attribute support for new targets.
By refactoring the code so all target specific variables are
initialized in a switch/case statement, it becomes simpler to extend
attribute support for new targets.
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D107968
The new ELF notes are added in clang-offload-wrapper, and llvm-readobj has to visualize them properly.
Differential Revision: https://reviews.llvm.org/D99552
The current implementation of displaying .stack_size information
presumes that each entry represents a single function but this is not
always the case. For example with the use of ICF multiple functions can
be represented with the same code, meaning that the address found in a
.stack_size entry corresponds to multiple function symbols.
This change allows multiple function names to be displayed when
appropriate.
Differential Revision: https://reviews.llvm.org/D105884
This is a follow up to https://reviews.llvm.org/D104080, and ca3bdb57fa (diff-e64a48fabe31db213a631fdc5f2acb51bdddf3f16a8fb2928784f4c579229585). The implementation of call graph profile was changed from a black box section to relocation approach. This was done to be compatible with post processing tools like strip/objcopy, and llvm equivalent. When they are invoked on object file before the final linking step with this new approach the symbol indices correctness is preserved.
The GNU binutils tools change the REL section to RELA section, unlike llvm tools. For example when strip -S is run on the ELF object files, as an intermediate step before linking. To preserve compatibility this patch extends implementation in LLD and ELFDumper to support both REL and RELA sections for call graph profile.
Reviewed By: MaskRay, jhenderson
Differential Revision: https://reviews.llvm.org/D105217
... even on targets preferring RELA. The section is only consumed by ld.lld
which can handle REL.
Follow-up to D104080 as I explained in the review. There are two advantages:
* The D104080 code only handles RELA, so arm/i386/mips32 etc may warn for -fprofile-use=/-fprofile-sample-use= usage.
* Decrease object file size for RELA targets
While here, change the relocation to relocate weights, instead of 0,1,2,3,..
I failed to catch the issue during review.
Currently when .llvm.call-graph-profile is created by llvm it explicitly encodes the symbol indices. This section is basically a black box for post processing tools. For example, if we run strip -s on the object files the symbol table changes, but indices in that section do not. In non-visible behavior indices point to wrong symbols. The visible behavior indices point outside of Symbol table: "invalid symbol index".
This patch changes the format by using R_*_NONE relocations to indicate the from/to symbols. The Frequency (Weight) will still be in the .llvm.call-graph-profile, but symbol information will be in relocation section. In LLD information from both sections is used to reconstruct call graph profile. Relocations themselves will never be applied.
With this approach post processing tools that handle relocations correctly work for this section also. Tools can add/remove symbols and as long as they handle relocation sections with this approach information stays correct.
Doing a quick experiment with clang-13.
The size went up from 107KB to 322KB, aggregate of all the input sections. Size of clang-13 binary is ~118MB. For users of -fprofile-use/-fprofile-sample-use the size of object files will go up slightly, it will not impact final binary size.
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D104080
This patch uses the `getSymbolIndexForFunctionAddress` helper function to print function names for BB address map entries.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D102900
Currently, each function name lookup is a linear iteration over all symbols defined in the object file which makes the total running time quadratic.
This patch optimizes the function name lookup by populating an **address to index** map upon the first function name lookup which is used to lookup each function name in O(1).
**impact**: For the clang binary built with `-fstack-size-section`, this improves the running time of `llvm-readobj --stack-size` from 7 minutes to 0.25 seconds.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D103072
The `e_flags` contains a mixture of bitfields and regular ones, ensure all of them can be serialized and deserialized.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D100250
This patch adds a fallthrough bit to basic block metadata, indicating whether the basic block can fallthrough without taking any branches. The bit will help us avoid an intel LBR bug which results in occasional duplicate entries at the beginning of the LBR stack.
This patch uses `MachineBasicBlock::canFallThrough()` to set the bit. This is not a const method because it eventually calls `TargetInstrInfo::analyzeBranch`, but it calls this function with the default `AllowModify=false`. So we can either make the argument to the `getBBAddrMapMetadata` non-const, or we can use `const_cast` when calling `canFallThrough`. I decide to go with the latter since this is purely due to legacy code, and in general we should not allow the BasicBlock to be mutable during `getBBAddrMapMetadata`.
Reviewed By: tmsriram
Differential Revision: https://reviews.llvm.org/D96918