Previously the options category given to cl::HideUnrelatedOptions was
local to llvm-reduce.cpp and as a result only options declared in that
file were visible in the -help options listing. This was a bit
unfortunate since there were several useful options declared in other
files. This patch addresses that.
Differential Revision: https://reviews.llvm.org/D118682
Add a new "operands-skip" pass whose goal is to remove instructions in the middle of dependency chains. For instance:
```
%baseptr = alloca i32
%arrayidx = getelementptr i32, i32* %baseptr, i32 %idxprom
store i32 42, i32* %arrayidx
```
might be reducible to
```
%baseptr = alloca i32
%arrayidx = getelementptr ... ; now dead, together with the computation of %idxprom
store i32 42, i32* %baseptr
```
Other passes would either replace `%baseptr` with undef (operands, instructions) or move it to become a function argument (operands-to-args), both of which might fail the interestingness check.
In principle the implementation allows operand replacement with any value or instruction in the function that passes the filter constraints (same type, dominance, "more reduced"), but is limited in this patch to values that are directly or indirectly used to compute the current operand value, motivated by the example above. Additionally, function arguments are added to the candidate set which helps reducing the number of relevant arguments mitigating a concern of too many arguments mentioned in https://reviews.llvm.org/D110274#3025013.
Possible future extensions:
* Instead of requiring the same type, bitcast/trunc/zext could be automatically inserted for some more flexibility.
* If undef is added to the candidate set, "operands-skip"is able to produce any reduction that "operands" can do. Additional candidates might be zero and one, where the "reductive power" classification can prefer one over the other. If undefined behaviour should not be introduced, undef can be removed from the candidate set.
Recommit after resolving conflict with D112651 and reusing
shouldReduceOperand from D113532.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D111818
Add a new "operands-skip" pass whose goal is to remove instructions in the middle of dependency chains. For instance:
```
%baseptr = alloca i32
%arrayidx = getelementptr i32, i32* %baseptr, i32 %idxprom
store i32 42, i32* %arrayidx
```
might be reducible to
```
%baseptr = alloca i32
%arrayidx = getelementptr ... ; now dead, together with the computation of %idxprom
store i32 42, i32* %baseptr
```
Other passes would either replace `%baseptr` with undef (operands, instructions) or move it to become a function argument (operands-to-args), both of which might fail the interestingness check.
In principle the implementation allows operand replacement with any value or instruction in the function that passes the filter constraints (same type, dominance, "more reduced"), but is limited in this patch to values that are directly or indirectly used to compute the current operand value, motivated by the example above. Additionally, function arguments are added to the candidate set which helps reducing the number of relevant arguments mitigating a concern of too many arguments mentioned in https://reviews.llvm.org/D110274#3025013.
Possible future extensions:
* Instead of requiring the same type, bitcast/trunc/zext could be automatically inserted for some more flexibility.
* If undef is added to the candidate set, "operands-skip"is able to produce any reduction that "operands" can do. Additional candidates might be zero and one, where the "reductive power" classification can prefer one over the other. If undefined behaviour should not be introduced, undef can be removed from the candidate set.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D111818
(Second try. Need to link against CodeGen and MC libs.)
The llvm-reduce tool has been extended to operate on MIR (import, clone and
export). Current limitation is that only a single machine function is
supported. A single reducer pass that operates on machine instructions (while
on SSA-form) has been added. Additional MIR specific reducer passes can be
added later as needed.
Differential Revision: https://reviews.llvm.org/D110527
The llvm-reduce tool has been extended to operate on MIR (import, clone and
export). Current limitation is that only a single machine function is
supported. A single reducer pass that operates on machine instructions (while
on SSA-form) has been added. Additional MIR specific reducer passes can be
added later as needed.
Differential Revision: https://reviews.llvm.org/D110527
Having non-undef constants in a final llvm-reduce output is nicer than
having undefs.
This splits the existing reduce-operands pass into three, one which does
the same as the current pass of reducing to undef, and two more to
reduce to the constant 1 and the constant 0. Do not reduce to undef if
the operand is a ConstantData, and do not reduce 0s to 1s.
Reducing GEP operands very frequently causes invalid IR (since types may
not match up if we index differently into a struct), so don't touch GEPs.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D111765
Instead of setting operands to undef as the "operands" pass does,
convert the operands to a function argument. This avoids having to
introduce undef values into the IR which have some unpredictability
during optimizations.
For instance,
define void @func() {
entry:
%val = add i32 32, 21
store i32 %val, i32* null
ret void
}
is reduced to
define void @func(i32 %val) {
entry:
%val1 = add i32 32, 21
store i32 %val, i32* null
ret void
}
(note that the instruction %val is renamed to %val1 when printing
the IR to avoid ambiguity; ideally %val1 would be removed by dce or the
instruction reduction pass)
Any call to @func is replaced with a call to the function with the
new signature and filled with undef. This is not ideal for IPA passes,
but those out-of-scope for now.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D111503
This removes the data layout, target triple, source filename, and module
identifier when possible.
Reviewed By: swamulism
Differential Revision: https://reviews.llvm.org/D108568