(e.g., a call, cast, etc.), immediately adjust the expression's type
to strip cv-qualifiers off of all non-class types (in C++) or all
types (in C). This effectively extends my previous fix for PR7463,
which was restricted to calls, to other kinds of expressions within
similar characteristics. I've audited every use of
getNonReferenceType() in the code base, switching to the newly-renamed
getNonLValueExprType() where necessary.
Big thanks to Eli for pointing out just how incomplete my original fix
for PR7463 actually was. We've been handling cv-qualifiers on rvalues
wrong for a very, very long time. Fixes PR7463.
llvm-svn: 108253
strip cv-qualifiers from the expression's type when the language calls
for it: in C, that's all the time, while C++ only does it for
non-class types.
Centralized the computation of the call expression type in
QualType::getCallResultType() and some helper functions in other nodes
(FunctionDecl, ObjCMethodDecl, FunctionType), and updated all relevant
callers of getResultType() to getCallResultType().
Fixes PR7598 and PR7463, along with a bunch of getResultType() call
sites that weren't stripping references off the result type (nothing
stripped cv-qualifiers properly before this change).
llvm-svn: 108234
CXXConstructExpr/CXXTemporaryObjectExpr/CXXNewExpr as
appropriate. Fixes PR7556, and provides a slide codegen improvement
when copy-initializing a POD class type from a value-initialized
temporary. Previously, we weren't eliding the copy.
llvm-svn: 107827
capture failures when we try to initialize an incomplete
type. Previously, we would (ab)use FK_ConversionFailed, then
occasionally dereference a null pointer when trying to diagnose the
failure. Fixes <rdar://problem/7959007>.
llvm-svn: 104286
ObjCObjectType, which is basically just a pair of
one of {primitive-id, primitive-Class, user-defined @class}
with
a list of protocols.
An ObjCObjectPointerType is therefore just a pointer which always points to
one of these types (possibly sugared). ObjCInterfaceType is now just a kind
of ObjCObjectType which happens to not carry any protocols.
Alter a rather large number of use sites to use ObjCObjectType instead of
ObjCInterfaceType. Store an ObjCInterfaceType as a pointer on the decl rather
than hashing them in a FoldingSet. Remove some number of methods that are no
longer used, at least after this patch.
By simplifying ObjCObjectPointerType, we are now able to easily remove and apply
pointers to Objective-C types, which is crucial for a certain kind of ObjC++
metaprogramming common in WebKit.
llvm-svn: 103870
"return" statement and mark the corresponding CXXConstructExpr as
elidable. Teach CodeGen that eliding a temporary is different from
eliding an object construction.
This is just a baby step toward NRVO.
llvm-svn: 103849
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
ensure that we complete the type when we need to look at constructors
during reference binding.
When determining whether the two types involved in reference binding
are reference-compatible, reference-related, etc., do not complete the
type of the reference itself because it is not necessary to determine
well-formedness of the program. Complete the type that we are binding
to, since that can affect whether we know about a derived-to-base
conversion.
Re-fixes PR7080.
llvm-svn: 103283
(which is ill-formed) with an initializer list. Also, change the
fallback from an assertion to a generic error message, which is far
friendlier. Fixes <rdar://problem/7730948>.
llvm-svn: 102930
keep track of whether we need to zero-initialize storage prior to
calling its constructor. Previously, we were only tracking this when
implicitly constructing the object (a CXXConstructExpr).
Fixes Boost's value-initialization tests, which means that the
Boost.Config library now passes all of its tests.
llvm-svn: 102461
thing. Audit all uses of Type::isStructure(), changing those calls to
isStructureOrClassType() as needed (which is alsmost
everywhere). Fixes the remaining failure in Boost.Utility/Swap.
llvm-svn: 102386
temporary needs to be bound, bind the copy object. Otherwise, we won't
end up calling the destructor for the copy. Fixes Boost.Optional.
llvm-svn: 102290
that the type we're copying is complete.
Boost.Regex now builds, although it's failing its regression tests
with our favorite "Sema doesn't consider destructor as used."
assertion.
llvm-svn: 102271
copy constructor, suppress user-defined conversions on the
argument. Otherwise, we can end up in a recursion loop where the
bind the argument of the copy constructor to another copy constructor call,
whose argument is then a copy constructor call...
Found by Boost.Regex which, alas, still isn't building.
llvm-svn: 102269
method parameter, provide a note pointing at the parameter itself so
the user does not have to manually look for the function/method being
called and match up parameters to arguments. For example, we now get:
t.c:4:5: warning: incompatible pointer types passing 'long *' to
parameter of
type 'int *' [-pedantic]
f(long_ptr);
^~~~~~~~
t.c:1:13: note: passing argument to parameter 'x' here
void f(int *x);
^
llvm-svn: 102038
during message sends) over to the new initialization code and away
from the C-only CheckSingleAssignmentConstraints. The enables the use
of C++ types in method parameters and message arguments, as well as
unifying more initialiation code overall.
llvm-svn: 102035
of buildbots with:
error: 'error' diagnostics expected but not seen:
Line 9: too few elements in vector initialization (expected 8 elements, have 2)
1 warning and 1 error generated.
llvm-svn: 101864
reference binding to an rvalue of reference-compatible type, check
parameters after the first for complete parameter types and build any
required default function arguments. We're effectively simulating the
type-checking for a call without building the call itself.
llvm-svn: 101705
reference-compatible type, the implementation is permitted to make a
copy of the rvalue (or many such copies, even). However, even though
we don't make that copy, we are required to check for the presence of
a suitable copy constructor. With this change, we do.
Note that in C++0x we are not allowed to make these copies, so we test
both dialects separately.
Also note the FIXME in one of the C++03 tests, where we are not
instantiating default function arguments for the copy constructor we
pick (but do not call). The fix is obvious; eliminating the infinite
recursion it causes is not. Will address that next.
llvm-svn: 101704
temporary object. This is blindingly obvious from reading C++
[over.match.ctor]p1, but somehow I'd missed it and it took DR152 to
educate me. Adjust one test that was relying on this non-standard
behavior.
llvm-svn: 101688
resolution. There are two sources of problems involving user-defined
conversions that this change eliminates, along with providing simpler
interfaces for checking implicit conversions:
- It eliminates a case of infinite recursion found in Boost.
- It eliminates the search for the constructor needed to copy a temporary
generated by an implicit conversion from overload
resolution. Overload resolution assumes that, if it gets a value
of the parameter's class type (or a derived class thereof), there
is a way to copy if... even if there isn't. We now model this
properly.
llvm-svn: 101680
TryStaticImplicitCast (for references, class types, and everything
else, respectively) into a single invocation of
InitializationSequence.
One of the paths (for class types) was the only client of
Sema::TryInitializationByConstructor, which I have eliminated. This
also simplified the interface for much of the cast-checking logic,
eliminating yet more code.
I've kept the representation of C++ functional casts with <> 1
arguments the same, despite the fact that I hate it. That fix will
come soon. To satisfy my paranoia, I've bootstrapped + tested Clang
with these changes.
llvm-svn: 101549
functional casts over to InitializationSequence, eliminating a caller
of Sema::TryImplicitConversion. We also get access and ambiguity
checking "for free".
More cleanups to come in this routine.
llvm-svn: 101526
generally recover from typos in keywords (since we would effectively
have to mangle the token stream). However, there are still benefits to
typo-correcting with keywords:
- We don't make stupid suggestions when the user typed something
that is similar to a keyword.
- We can suggest the keyword in a diagnostic (did you mean
"static_cast"?), even if we can't recover and therefore don't have
a fix-it.
llvm-svn: 101274
poor (and wrong) approximation of the actual rules governing when to
build a copy and when it can be elided.
The correct implementation is actually simpler than the
approximation. When we only enumerate constructors as part of
initialization (e.g., for direct initialization or when we're copying
from a class type or one of its derived classes), we don't create a
copy. When we enumerate all conversion functions, we do create a
copy. Before, we created some extra copies and missed some
others. The new test copy-initialization.cpp shows a case where we
missed creating a (required, non-elidable) copy as part of a
user-defined conversion, which resulted in a miscompile. This commit
also fixes PR6757, where the missing copy made us reject well-formed
code in the ternary operator.
This commit also cleans up our handling of copy elision in the case
where we create an extra copy of a temporary object, which became
necessary now that we produce the right copies. The code that seeks to
find the temporary object being copied has moved into
Expr::getTemporaryObject(); it used to have two different
not-quite-the-same implementations, one in Sema and one in CodeGen.
Note that we still do not attempt to perform the named return value
optimization, so we miss copy elisions for return values and throw
expressions.
llvm-svn: 100196
the underlying/instantiated decl) through a lot of API, including "intermediate"
MemberExprs required for (e.g.) template instantiation. This is necessary
because of the access semantics of member accesses to using declarations:
only the base class *containing the using decl* need be accessible from the
naming class.
This allows us to complete an access-controlled selfhost, if there are no
recent regressions.
llvm-svn: 99936
initialization code. Exposed a bug where we were not marking an
implicit conversion as an lvalue when we were forming a call to a
conversion function whose return type is a reference.
llvm-svn: 99459
entity (if applicable) which was actually looked up. If a candidate was found
via a using declaration, this is the UsingShadowDecl; otherwise, if
the candidate is template specialization, this is the template; otherwise,
this is the function.
The point of this exercise is that "found declarations" are the entities
we do access control for, not their underlying declarations. Broadly speaking,
this patch fixes access control for using declarations.
There is a *lot* of redundant code calling into the overload-resolution APIs;
we really ought to clean that up.
llvm-svn: 98945
nested-name-specifier. For example, this allows member access in
diamond-shaped hierarchies like:
struct Base {
void Foo();
int Member;
};
struct D1 : public Base {};
struct D2 : public Base {};
struct Derived : public D1, public D2 { }
void Test(Derived d) {
d.Member = 17; // error: ambiguous cast from Derived to Base
d.D1::Member = 17; // error: okay, modify D1's Base's Member
}
Fixes PR5820 and <rdar://problem/7535045>. Also, eliminate some
redundancy between Sema::PerformObjectMemberConversion() and
Sema::PerformObjectArgumentInitialization() -- the latter now calls
the former.
llvm-svn: 97674
used to do this, but it got lost when we switched functional-style
cast syntax over to using the new initialization code. Fixes PR6457.
llvm-svn: 97568
to initializer expressions in an array allocated using ASTContext.
This plugs a memory leak when ASTContext uses a BumpPtrAllocator to
allocate memory for AST nodes.
In my mind this isn't an ideal solution; it would be nice to have
a general "vector"-like class that allocates memory using ASTContext,
but whose guts could be separated from the methods of InitListExpr
itself. I haven't gone and taken this approach yet because it isn't
clear yet if we'll eventually want an alternate solution for recylcing
memory using by InitListExprs as we are constructing the ASTs.
llvm-svn: 96642
Sema::ActOnUninitializedDecl over to InitializationSequence (with
default initialization), eliminating redundancy. More importantly, we
now check that a const definition in C++ has an initilizer, which was
an #if 0'd code for many, many months. A few other tweaks were needed
to get everything working again:
- Fix all of the places in the testsuite where we defined const
objects without initializers (now that we diagnose this issue)
- Teach instantiation of static data members to find the previous
declaration, so that we build proper redeclaration
chains. Previously, we had the redeclaration chain but built it
too late to be useful, because...
- Teach instantiation of static data member definitions not to try
to check an initializer if a previous declaration already had an
initializer. This makes sure that we don't complain about static
const data members with in-class initializers and out-of-line
definitions.
- Move all of the incomplete-type checking logic out of
Sema::FinalizeDeclaratorGroup; it makes more sense in
ActOnUnitializedDecl.
There may still be a few places where we can improve these
diagnostics. I'll address that as a separate commit.
llvm-svn: 95657
(necessarily simultaneous) changes:
- CXXBaseOrMemberInitializer now contains only a single initializer
rather than a set of initialiation arguments + a constructor. The
single initializer covers all aspects of initialization, including
constructor calls as necessary but also cleanup of temporaries
created by the initializer (which we never handled
before!).
- Rework + simplify code generation for CXXBaseOrMemberInitializers,
since we can now just emit the initializer as an initializer.
- Switched base and member initialization over to the new
initialization code (InitializationSequence), so that it
- Improved diagnostics for the new initialization code when
initializing bases and members, to match the diagnostics produced
by the previous (special-purpose) code.
- Simplify the representation of type-checked constructor initializers in
templates; instead of keeping the fully-type-checked AST, which is
rather hard to undo at template instantiation time, throw away the
type-checked AST and store the raw expressions in the AST. This
simplifies instantiation, but loses a little but of information in
the AST.
- When type-checking implicit base or member initializers within a
dependent context, don't add the generated initializers into the
AST, because they'll look like they were explicit.
- Record in CXXConstructExpr when the constructor call is to
initialize a base class, so that CodeGen does not have to infer it
from context. This ensures that we call the right kind of
constructor.
There are also a few "opportunity" fixes here that were needed to not
regress, for example:
- Diagnose default-initialization of a const-qualified class that
does not have a user-declared default constructor. We had this
diagnostic specifically for bases and members, but missed it for
variables. That's fixed now.
- When defining the implicit constructors, destructor, and
copy-assignment operator, set the CurContext to that constructor
when we're defining the body.
llvm-svn: 94952
requires a temporary. Previously, we were building an initialization
sequence that bound to the bit-field as if it were a real lvalue. Note
that we previously (and still) diagnose binding of non-const
references to bit-fields, as we should.
There's no real way to test that this code is correct, since reference
binding does not *currently* have any representation in the AST. This
fix should make it easier for that to happen, so I've verified this
fix with...
Added InitializationSequence::dump(), to print an initialization
sequence for debugging purposes.
llvm-svn: 94826