value should be in GPRs when it's going to be used as a scalar, and we use
VMOVRRD to make that happen, but if the value is converted back to a vector
we need to fold to a simple bit_convert. Radar 8407927.
llvm-svn: 114233
1) Do forward copy propagation. This makes it easier to estimate the cost of the
instruction being sunk.
2) Break critical edges on demand, including cases where the value is used by
PHI nodes.
Critical edge splitting is not yet enabled by default.
llvm-svn: 114227
legacy asm printer uses instructions of the form, "mov r0, r0, lsl #3", while
the MC-instruction printer uses the form "lsl r0, r0, #3". The latter mnemonic
is correct and preferred according the ARM documentation (A8.6.98). The former
are pseudo-instructions for the latter.
llvm-svn: 114221
expression to include the modifier.
- Gross, but this a corner case we don't expect to see often in practice, but
it is worth accepting.
- Also improves diagnostics on invalid modifiers.
llvm-svn: 114154
walking the asm arguments once and stashing their Values. This is
wrong because the same memory location can be in the list twice, and
if the first one has a sunkaddr substituted, the stashed value for the
second one will be wrong (use-after-free). PR 8154.
llvm-svn: 114104
a Constant into a ConstantRange. Handle this conservatively for now, rather than asserting. The testcase is
more complex that I would like, but the manifestation of the problem is sensitive to iteration orders and the state of the
LVI cache, and I have not been able to reproduce it with manually constructed or simplified cases.
Fixes PR8162.
llvm-svn: 114103
This cleans up after the mess r108567 left in the CellSPU backend.
ORCvt-instruction were used to reinterpret registers, and the ORs were then
removed by isMoveInstr(). This patch now removes 350 instrucions of format:
or $3, $3, $3
(from the 52 testcases in CodeGen/CellSPU). One case of a nonexistant or is
checked for.
Some moves of the form 'ori $., $., 0' and 'ai $., $., 0' still remain.
llvm-svn: 114074
The ELF implementation now creates text, data and bss to match the gnu as
behavior.
The text streamer still has the old MachO specific behavior since
the testsuite checks that it will error when a directive is given
before a setting the current section for example.
A nice benefit is that -n is not required anymore when producing
ELF files.
llvm-svn: 114027
encountered while building llvm-gcc for arm. This is probably the same issue
that the ppc buildbot hit. llvm::prior works on a MachineBasicBlock::iterator,
not a plain MachineInstr.
llvm-svn: 113983
backing out following to get it back to green,
so I can investigate in peace:
svn merge -c -113840 llvm/test/CodeGen/ARM/arm-and-tst-peephole.ll
svn merge -c -113876 -c -113839 llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
llvm-svn: 113980
"The register specified for a dregpair is the corresponding Q register, so to
get the pair, we need to look up the sub-regs based on the qreg. Create a
lookup function since we don't have access to TargetRegisterInfo here to
be able to use getSubReg(ARM::dsub_[01])."
Additionaly, fix the NEON VLD1* and VST1* instruction patterns not to use
the dregpair modifier for the 2xdreg versions. Explicitly specifying the two
registers as operands is more correct and more consistent with the other
instruction patterns. This enables further cleanup of special case code in the
disassembler as a nice side-effect.
llvm-svn: 113903
to expose greater opportunities for store narrowing in codegen. This patch fixes a potential
infinite loop in instcombine caused by one of the introduced transforms being overly aggressive.
llvm-svn: 113763
This can result in increased opportunities for store narrowing in code generation. Update a number of
tests for this change. This fixes <rdar://problem/8285027>.
Additionally, because this inverts the order of ors and ands, some patterns for optimizing or-of-and-of-or
no longer fire in instances where they did originally. Add a simple transform which recaptures most of these
opportunities: if we have an or-of-constant-or and have failed to fold away the inner or, commute the order
of the two ors, to give the non-constant or a chance for simplification instead.
llvm-svn: 113679
to use AddrMode4, there was a count of the registers stored in one of the
operands. I changed that to just count the operands but forgot to adjust for
the size of D registers. This was noticed by Evan as a performance problem
but it is a potential correctness bug as well, since it is possible that this
could merge a base update with a non-matching immediate.
llvm-svn: 113576
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
llvm-svn: 113570
- Output format and some of the code stolen from macho-dump.
- Somewhat incomplete and probably buggy.
- Comes with a very basic test.
llvm-svn: 113488
unrolling threshold to the optimize-for-size threshold. Basically, for loops containing calls, unrolling
can still be profitable as long as the loop is REALLY small.
llvm-svn: 113439
turning (fptrunc (sqrt (fpext x))) -> (sqrtf x) is great, but we have
to delete the original sqrt as well. Not doing so causes us to do
two sqrt's when building with -fmath-errno (the default on linux).
llvm-svn: 113260
always be disambiguated as sldtw. sldtw and sldtq with
a mem operands have the same effect, but sldtw is more
compact. Force it to sldtw, resolving rdar://8017530
llvm-svn: 113186
in the duplicated block instead of duplicating them.
Duplicating them into the end of the loop and the preheader
means that we got a phi node in the header of the loop,
which prevented LICM from hoisting them. GVN would
usually come around later and merge the duplicated
instructions so we'd get reasonable output... except that
anything dependent on the shoulda-been-hoisted value can't
be hoisted. In PR5319 (which this fixes), a memory value
didn't get promoted.
llvm-svn: 113134
Since mem2reg isn't run at -O0, we get a ton of reloads from the stack,
for example, before, this code:
int foo(int x, int y, int z) {
return x+y+z;
}
used to compile into:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
movl 4(%rsp), %esi
addl %edx, %esi
movl (%rsp), %edx
addl %esi, %edx
movl %edx, %eax
addq $12, %rsp
ret
Now we produce:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
addl 4(%rsp), %edx ## Folded load
addl (%rsp), %edx ## Folded load
movl %edx, %eax
addq $12, %rsp
ret
Fewer instructions and less register use = faster compiles.
llvm-svn: 113102
location is being re-stored to the memory location. We would get
a dangling pointer from the SSAUpdate data structure and miss a
use. This fixes PR8068
llvm-svn: 113042
"For ARM stack frames that utilize variable sized objects and have either
large local stack areas or require dynamic stack realignment, allocate a
base register via which to access the local frame. This allows efficient
access to frame indices not accessible via the FP (either due to being out
of range or due to dynamic realignment) or the SP (due to variable sized
object allocation). In particular, this greatly improves efficiency of access
to spill slots in Thumb functions which contain VLAs."
r112986 fixed a latent bug exposed by the above.
llvm-svn: 112989
vabd intrinsic and add and/or zext operations. In the case of vaba, this
also avoids the need for a DAG combine pattern to combine vabd with add.
Update tests. Auto-upgrade the old intrinsics.
llvm-svn: 112941
large local stack areas or require dynamic stack realignment, allocate a
base register via which to access the local frame. This allows efficient
access to frame indices not accessible via the FP (either due to being out
of range or due to dynamic realignment) or the SP (due to variable sized
object allocation). In particular, this greatly improves efficiency of access
to spill slots in Thumb functions which contain VLAs.
rdar://7352504
rdar://8374540
rdar://8355680
llvm-svn: 112883
there are clearly no stores between the load and the store. This fixes
this miscompile reported as PR7833.
This breaks the test/CodeGen/X86/narrow_op-2.ll optimization, which is
safe, but awkward to prove safe. Move it to X86's README.txt.
llvm-svn: 112861
add, and subtract operations with zero-extended or sign-extended vectors.
Update tests. Add auto-upgrade support for the old intrinsics.
llvm-svn: 112773
check more strict, breaking some cases not checked in the
testsuite, but also exposes some foldings not done before,
as this example:
movaps (%rdi), %xmm0
movaps (%rax), %xmm1
movaps %xmm0, %xmm2
movss %xmm1, %xmm2
shufps $36, %xmm2, %xmm0
now is generated as:
movaps (%rdi), %xmm0
movaps %xmm0, %xmm1
movlps (%rax), %xmm1
shufps $36, %xmm1, %xmm0
llvm-svn: 112753
on llvmdev: SRoA is introducing MMX datatypes like <1 x i64>,
which then cause random problems because the X86 backend is
producing mmx stuff without inserting proper emms calls.
In the short term, force off MMX datatypes. In the long term,
the X86 backend should not select generic vector types to MMX
registers. This is being worked on, but won't be done in time
for 2.8. rdar://8380055
llvm-svn: 112696
int x(int t) {
if (t & 256)
return -26;
return 0;
}
We generate this:
tst.w r0, #256
mvn r0, #25
it eq
moveq r0, #0
while gcc generates this:
ands r0, r0, #256
it ne
mvnne r0, #25
bx lr
Scandalous really!
During ISel time, we can look for this particular pattern. One where we have a
"MOVCC" that uses the flag off of a CMPZ that itself is comparing an AND
instruction to 0. Something like this (greatly simplified):
%r0 = ISD::AND ...
ARMISD::CMPZ %r0, 0 @ sets [CPSR]
%r0 = ARMISD::MOVCC 0, -26 @ reads [CPSR]
All we have to do is convert the "ISD::AND" into an "ARM::ANDS" that sets [CPSR]
when it's zero. The zero value will all ready be in the %r0 register and we only
need to change it if the AND wasn't zero. Easy!
llvm-svn: 112664
I have not been able to find a way to test each in isolation, for a few reasons:
1) The ability to look-through non-i1 BinaryOperator's requires the ability to look through non-constant
ICmps in order for it to ever trigger.
2) The ability to do LVI-powered PHI value determination only matters in cases that ProcessBranchOnPHI
can't handle. Since it already handles all the cases without other instructions in the def-use chain
between the PHI and the branch, it requires the ability to look through ICmps and/or BinaryOperators
as well.
llvm-svn: 112611
This actually exposed an infinite recursion bug in ComputeValueKnownInPredecessors which theoretically already existed (in JumpThreading's
handling of and/or of i1's), but never manifested before. This patch adds a tracking set to prevent this case.
llvm-svn: 112589
1) nuke ConstDataCoalSection, which is dead.
2) revise my previous patch for rdar://8018335,
which was completely wrong. Specifically, it doesn't
make sense to mark __TEXT,__const_coal as PURE_INSTRUCTIONS,
because it is for readonly data. templates (it turns out)
go to const_coal_nt. The real fix for rdar://8018335 was
to give ConstTextCoalSection a section kind of ReadOnly
instead of Text.
llvm-svn: 112496
when the top elements of a vector are undefined. This happens all
the time for X86-64 ABI stuff because only the low 2 elements of
a 4 element vector are defined. For example, on:
_Complex float f32(_Complex float A, _Complex float B) {
return A+B;
}
We used to produce (with SSE2, SSE4.1+ uses insertps):
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $16, %xmm2, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm1
movdqa %xmm2, %xmm0
unpcklps %xmm1, %xmm0
ret
We now produce:
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm3
addss %xmm1, %xmm3
movaps %xmm2, %xmm0
unpcklps %xmm3, %xmm0
ret
This implements rdar://8368414
llvm-svn: 112378
all the other LDM/STM instructions. This fixes asm printer crashes when
compiling with -O0. I've changed one of the NEON tests (vst3.ll) to run
with -O0 to check this in the future.
Prior to this change VLDM/VSTM used addressing mode #5, but not really.
The offset field was used to hold a count of the number of registers being
loaded or stored, and the AM5 opcode field was expanded to specify the IA
or DB mode, instead of the standard ADD/SUB specifier. Much of the backend
was not aware of these special cases. The crashes occured when rewriting
a frameindex caused the AM5 offset field to be changed so that it did not
have a valid submode. I don't know exactly what changed to expose this now.
Maybe we've never done much with -O0 and NEON. Regardless, there's no longer
any reason to keep a count of the VLDM/VSTM registers, so we can use
addressing mode #4 and clean things up in a lot of places.
llvm-svn: 112322
A = shl x, 42
...
B = lshr ..., 38
which can be transformed into:
A = shl x, 4
...
iff we can prove that the would-be-shifted-in bits
are already zero. This eliminates two shifts in the testcase
and allows eliminate of the whole i128 chain in the real example.
llvm-svn: 112314
framework, which is good at ripping through bitfield
operations. This generalize a bunch of the existing
xforms that instcombine does, such as
(x << c) >> c -> and
to handle intermediate logical nodes. This is useful for
ripping up the "promote to large integer" code produced by
SRoA.
llvm-svn: 112304
by the SRoA "promote to large integer" code, eliminating
some type conversions like this:
%94 = zext i16 %93 to i32 ; <i32> [#uses=2]
%96 = lshr i32 %94, 8 ; <i32> [#uses=1]
%101 = trunc i32 %96 to i8 ; <i8> [#uses=1]
This also unblocks other xforms from happening, now clang is able to compile:
struct S { float A, B, C, D; };
float foo(struct S A) { return A.A + A.B+A.C+A.D; }
into:
_foo: ## @foo
## BB#0: ## %entry
pshufd $1, %xmm0, %xmm2
addss %xmm0, %xmm2
movdqa %xmm1, %xmm3
addss %xmm2, %xmm3
pshufd $1, %xmm1, %xmm0
addss %xmm3, %xmm0
ret
on x86-64, instead of:
_foo: ## @foo
## BB#0: ## %entry
movd %xmm0, %rax
shrq $32, %rax
movd %eax, %xmm2
addss %xmm0, %xmm2
movapd %xmm1, %xmm3
addss %xmm2, %xmm3
movd %xmm1, %rax
shrq $32, %rax
movd %eax, %xmm0
addss %xmm3, %xmm0
ret
This seems pretty close to optimal to me, at least without
using horizontal adds. This also triggers in lots of other
code, including SPEC.
llvm-svn: 112278
fix: add a flag to MapValue and friends which indicates whether
any module-level mappings are being made. In the common case of
inlining, no module-level mappings are needed, so MapValue doesn't
need to examine non-function-local metadata, which can be very
expensive in the case of a large module with really deep metadata
(e.g. a large C++ program compiled with -g).
This flag is a little awkward; perhaps eventually it can be moved
into the ClonedCodeInfo class.
llvm-svn: 112190
expanding: e.g. <2 x float> -> <4 x float> instead of -> 2 floats. This
affects two places in the code: handling cross block values and handling
function return and arguments. Since vectors are already widened by
legalizetypes, this gives us much better code and unblocks x86-64 abi
and SPU abi work.
For example, this (which is a silly example of a cross-block value):
define <4 x float> @test2(<4 x float> %A) nounwind {
%B = shufflevector <4 x float> %A, <4 x float> undef, <2 x i32> <i32 0, i32 1>
%C = fadd <2 x float> %B, %B
br label %BB
BB:
%D = fadd <2 x float> %C, %C
%E = shufflevector <2 x float> %D, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
ret <4 x float> %E
}
Now compiles into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
addps %xmm0, %xmm0
ret
previously it compiled into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
pshufd $1, %xmm0, %xmm1
## kill: XMM0<def> XMM0<kill> XMM0<def>
insertps $0, %xmm0, %xmm0
insertps $16, %xmm1, %xmm0
addps %xmm0, %xmm0
ret
This implements rdar://8230384
llvm-svn: 112101
comparison that would overflow.
- The other under/overflow cases can't actually happen because the immediates
which would trigger them are legal (so we don't enter this code), but
adjusted the style to make it clear the transform is always valid.
llvm-svn: 112053
- Implemented by manually splicing the tokens. If this turns out to be
problematically platform specific, a more elegant solution would be to
implement some context dependent lexing support.
llvm-svn: 111934
comparison is in a different basic block from the branch. In such
cases, the comparison's operands may not have initialized virtual
registers available.
llvm-svn: 111709
It's similar to "linker_private_weak", but it's known that the address of the
object is not taken. For instance, functions that had an inline definition, but
the compiler decided not to inline it. Note, unlike linker_private and
linker_private_weak, linker_private_weak_def_auto may have only default
visibility. The symbols are removed by the linker from the final linked image
(executable or dynamic library).
llvm-svn: 111684
The "half vectors" are now widened to full size by the legalizer.
The only exception is in parameter passing, where half vectors are
expanded. This causes changes to some dejagnu tests.
llvm-svn: 111360
from the LHS should disable reconsidering that pred on the
RHS. However, knowing something about the pred on the RHS
shouldn't disable subsequent additions on the RHS from
happening.
llvm-svn: 111349
where the step value is an induction variable from an outer loop, to
avoid trouble trying to re-expand such expressions. This effectively
hides such expressions from indvars and lsr, which prevents them
from getting into trouble.
llvm-svn: 111317
- Eliminate redundant successors.
- Convert an indirectbr with one successor into a direct branch.
Also, generalize SimplifyCFG to be able to be run on a function entry block.
It knows quite a few simplifications which are applicable to the entry
block, and it only needs a few checks to avoid trouble with the entry block.
llvm-svn: 111060
- Make foldMemoryOperandImpl aware of 256-bit zero vectors folding and support the 128-bit counterparts of AVX too.
- Make sure MOV[AU]PS instructions are only selected when SSE1 is enabled, and duplicate the patterns to match AVX.
- Add a testcase for a simple 128-bit zero vector creation.
llvm-svn: 110946
term goal here is to be able to match enough of vector_shuffle and build_vector
so all avx intrinsics which aren't mapped to their own built-ins but to
shufflevector calls can be codegen'd. This is the first (baby) step, support
building zeroed vectors.
llvm-svn: 110897
entry for ARM STRBT is actually a super-instruction for A8.6.199 STRBT A1 & A2.
Recover by looking for ARM:USAT encoding pattern before delegating to the auto-
gened decoder.
Added a "usat" test case to arm-tests.txt.
llvm-svn: 110894
platform. It's apparently "bl __muldf3" on linux, for example. Since that's
not what we're checking here, it's more robust to just force a triple. We
just wwant to check that the inline FP instructions are only generated
on cpus that have them."
llvm-svn: 110830
float t1(int argc) {
return (argc == 1123) ? 1.234f : 2.38213f;
}
We would generate truly awful code on ARM (those with a weak stomach should look
away):
_t1:
movw r1, #1123
movs r2, #1
movs r3, #0
cmp r0, r1
mov.w r0, #0
it eq
moveq r0, r2
movs r1, #4
cmp r0, #0
it ne
movne r3, r1
adr r0, #LCPI1_0
ldr r0, [r0, r3]
bx lr
The problem was that legalization was creating a cascade of SELECT_CC nodes, for
for the comparison of "argc == 1123" which was fed into a SELECT node for the ?:
statement which was itself converted to a SELECT_CC node. This is because the
ARM back-end doesn't have custom lowering for SELECT nodes, so it used the
default "Expand".
I added a fairly simple "LowerSELECT" to the ARM back-end. It takes care of this
testcase, but can obviously be expanded to include more cases.
Now we generate this, which looks optimal to me:
_t1:
movw r1, #1123
movs r2, #0
cmp r0, r1
adr r0, #LCPI0_0
it eq
moveq r2, #4
ldr r0, [r0, r2]
bx lr
.align 2
LCPI0_0:
.long 1075344593 @ float 2.382130e+00
.long 1067316150 @ float 1.234000e+00
llvm-svn: 110799
memory and synchronization barrier dmb and dsb instructions.
- Change instruction names to something more sensible (matching name of actual
instructions).
- Added tests for memory barrier codegen.
llvm-svn: 110785
Also added a test case to check for the added benefit of this patch: it's optimizing away the unnecessary restore of sp from fp for some non-leaf functions.
llvm-svn: 110707
reserved, not available for general allocation. This eliminates all the
extra checks for Darwin.
This change also fixes the use of FP to access frame indices in leaf
functions and cleaned up some confusing code in epilogue emission.
llvm-svn: 110655
Without this what was happening was:
* R3 is not marked as "used"
* ARM backend thinks it has to save it to the stack because of vaarg
* Offset computation correctly ignores it
* Offsets are wrong
llvm-svn: 110446
response from getModRefInfo is not useful here. Instead, check for identical
calls only in the NoModRef case.
Reapply r110270, and strengthen it to compensate for the memdep changes.
When both calls are readonly, there is no dependence between them.
llvm-svn: 110382
to return Ref if the left callsite only reads memory read or written
by the right callsite; fix BasicAliasAnalysis to implement this.
Add AliasAnalysisEvaluator support for testing the two-callsite
form of getModRefInfo.
llvm-svn: 110270
nice farm in the country where it can play with other tests. And bunnies.
It is not clear what is being tested, and the revision history shows a bunch of
random changes to the expected instruction count. Clearly, we are just fudging
it to pass whenever it fails.
llvm-svn: 110118
such registers in SPU, this support boils down to "emulating"
them by duplicating instructions on the general purpose registers.
This adds the most basic operations on v2i32: passing parameters,
addition, subtraction, multiplication and a few others.
llvm-svn: 110035
run the tests using DejaGNU, but not for much longer. This is a last call for
DejaGNU supporters, if no one complains soon the DejaGNU support is going to
die.
llvm-svn: 109997
away from a computer now.
--- Reverse-merging r109881 into '.':
D test/CodeGen/X86/avx-intrinsics-x86.ll
D test/CodeGen/X86/avx-intrinsics-x86_64.ll
llvm-svn: 109959
formerly rejected by the FE, so asserted in the BE; now the FE only
warns, so we treat it as a legitimate fatal error in PPC BE.
This means the test for the feature won't pass, so it's xfail'd.
llvm-svn: 109892
have 4 bits per register in the operand encoding), but have undefined
behavior when the operand value is 13 or 15 (SP and PC, respectively).
The trivial coalescer in linear scan sometimes will merge a copy from
SP into a subsequent instruction which uses the copy, and if that
instruction cannot legally reference SP, we get bad code such as:
mls r0,r9,r0,sp
instead of:
mov r2, sp
mls r0, r9, r0, r2
This patch adds a new register class for use by Thumb2 that excludes
the problematic registers (SP and PC) and is used instead of GPR
for those operands which cannot legally reference PC or SP. The
trivial coalescer explicitly requires that the register class
of the destination for the COPY instruction contain the source
register for the COPY to be considered for coalescing. This prevents
errant instructions like that above.
PR7499
llvm-svn: 109842
integers with mov + vdup. 8003375. This is
currently disabled by default because LICM will
not hoist a VDUP, so it pessimizes the code if
the construct occurs inside a loop (8248029).
llvm-svn: 109799
alloca instructions (constrained by their internal encoding),
and add error checking for it. Fix an instcombine bug which
generated huge alignment values (null is infinitely aligned).
This fixes undefined behavior noticed by John Regehr.
llvm-svn: 109643
This assumption is not satisfied due to global mergeing.
Workaround the issue by temporary disablinge mergeing of const globals.
Also, ignore LLVM "special" globals. This fixes PR7716
llvm-svn: 109423
it inserted rather than using LoopInfo::getCanonicalInductionVariable to
rediscover it, since that doesn't work on non-canonical loops. This fixes
infinite recurrsion on such loops; PR7562.
llvm-svn: 109419
it's too late to start backing off aggressive latency scheduling when most
of the registers are in use so the threshold should be a bit tighter.
- Correctly handle live out's and extract_subreg etc.
- Enable register pressure aware scheduling by default for hybrid scheduler.
For ARM, this is almost always a win on # of instructions. It's runtime
neutral for most of the tests. But for some kernels with high register
pressure it can be a huge win. e.g. 464.h264ref reduced number of spills by
54 and sped up by 20%.
llvm-svn: 109279
The RegionInfo pass detects single entry single exit regions in a function,
where a region is defined as any subgraph that is connected to the remaining
graph at only two spots.
Furthermore an hierarchical region tree is built.
Use it by calling "opt -regions analyze" or "opt -view-regions".
llvm-svn: 109089
Make MDNode::destroy private.
Fix the one thing that used MDNode::destroy, outside of MDNode itself.
One should never delete or destroy an MDNode explicitly. MDNodes
implicitly go away when there are no references to them (implementation
details aside).
llvm-svn: 109028
- Fix a typo for PIC check during jmp table lowering
- Also fix the "first jump table basic block is not
considered only reachable by fall through" problem, use this
ad-hoc solution until I come up with something better.
Patch by stetorvs@gmail.com
llvm-svn: 108820
instruction, we only want to allow the one for the current subtarget.
- This also fixes suffix matching for jmp instructions, because it eliminates
the ambiguity between 'jmpl' and 'jmpq'.
llvm-svn: 108746
void foo() { __builtin_unreachable(); }
It will output the following on Darwin X86:
_func1:
Leh_func_begin0:
pushq %rbp
Ltmp0:
movq %rsp, %rbp
Ltmp1:
Leh_func_end0:
This prolog adds a new Call Frame Information (CFI) row to the FDE with an
address that is not within the address range of the code it describes -- part is
equal to the end of the function -- and therefore results in an invalid EH
frame. If we emit a nop in this situation, then the CFI row is now within the
address range.
llvm-svn: 108568
occasions, caused code to be generated in a different order.
All cases I've seen involved float softening in the type
legalizer, and this could be perhaps be fixed there, but
it's better not to generate things differently in the first
place. 7797940 (6/29/2010..7/15/2010).
llvm-svn: 108484
the function. We'll just turn it into a "trap" instruction instead.
The problem with not handling this is that it might generate a prologue without
the equivalent epilogue to go with it:
$ cat t.ll
define void @foo() {
entry:
unreachable
}
$ llc -o - t.ll -relocation-model=pic -disable-fp-elim -unwind-tables
.section __TEXT,__text,regular,pure_instructions
.globl _foo
.align 4, 0x90
_foo: ## @foo
Leh_func_begin0:
## BB#0: ## %entry
pushq %rbp
Ltmp0:
movq %rsp, %rbp
Ltmp1:
Leh_func_end0:
...
The unwind tables then have bad data in them causing all sorts of problems.
Fixes <rdar://problem/8096481>.
llvm-svn: 108473
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
llvm-svn: 108465
to keep "Text" in sync with the "pure instructions" section attribute.
Lack of this attribute was preventing the assembler from emitting
multibyte noops instructions for templates (and inlines, and other
coalesced stuff) and was causing the assembler to mismatch .o files.
This fixes rdar://8018335
llvm-svn: 108461
mutated by recursive simplification. This also enhances
ReplaceAndSimplifyAllUses to actually do a real RAUW
at the end of it, which updates any value handles
pointing to "From" to start pointing to "To". This
seems useful for debug info and random other VH users.
llvm-svn: 108415
address cannot be allocated a register is in 32-bit mode where the first
three arguments are marked inreg. In that case EAX, EDX, and ECX will be
used for argument passing.
This fixes PR7610.
llvm-svn: 108327
by a return that returns a constant, while elsewhere in the function
another return instruction returns a different constant. This is a
special case of accumulator recursion, so just generalize the existing
logic a bit.
llvm-svn: 108241
Targets must now implement TargetInstrInfo::copyPhysReg instead. There is no
longer a default implementation forwarding to copyRegToReg.
llvm-svn: 108095
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
llvm-svn: 108072
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
llvm-svn: 108039
notes:
- The instructions are being added with dummy placeholder patterns using some 256
specifiers, this is not meant to work now, but since there are some multiclasses
generic enough to accept them, when we go for codegen, the stuff will be already
there.
- Add VEX encoding bits to support YMM
- Add MOVUPS and MOVAPS in the first round
- Use "Y" as suffix for those Instructions: MOVUPSYrr, ...
- All AVX instructions in X86InstrSSE.td will move soon to a new X86InstrAVX
file.
llvm-svn: 107996
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
llvm-svn: 107987
disabled and then never turned back on again. Adjust some tests, one because
this change avoids an unnecessary instruction, and the other to make it
continue testing what it was intended to test.
llvm-svn: 107941
in memory operands at the same type as hard coded segments.
This fixes problems where we'd emit the segment override after
the REX prefix on instructions like:
mov %gs:(%rdi), %rax
This fixes rdar://8127102. I have several cleanup patches coming
next.
llvm-svn: 107917
(X >s -1) ? C1 : C2 and (X <s 0) ? C2 : C1
into ((X >>s 31) & (C2 - C1)) + C1, avoiding the conditional.
This optimization could be extended to take non-const C1 and C2 but we better
stay conservative to avoid code size bloat for now.
for
int sel(int n) {
return n >= 0 ? 60 : 100;
}
we now generate
sarl $31, %edi
andl $40, %edi
leal 60(%rdi), %eax
instead of
testl %edi, %edi
movl $60, %ecx
movl $100, %eax
cmovnsl %ecx, %eax
llvm-svn: 107866
1. The arguments are f32.
2. The arguments are loads and they have no uses other than the comparison.
3. The comparison code is EQ or NE.
e.g.
vldr.32 s0, [r1]
vldr.32 s1, [r0]
vcmpe.f32 s1, s0
vmrs apsr_nzcv, fpscr
beq LBB0_2
=>
ldr r1, [r1]
ldr r0, [r0]
cmp r0, r1
beq LBB0_2
More complicated cases will be implemented in subsequent patches.
llvm-svn: 107852
Add explicit testcases for tail calls within the same module.
Duplicate some code to humor those who think .w doesn't apply on ARM.
Leave this disabled on Thumb1, and add some comments explaining why it's hard
and won't gain much.
llvm-svn: 107851
interface needs implementations to be consistent, so any code which
wants to support different semantics must use a different interface.
It's not currently worthwhile to add a new interface for this new
concept.
Document that AliasAnalysis doesn't support cross-function queries.
llvm-svn: 107776
It is OK for an alias live range to overlap if there is a copy to or from the
physical register. CoalescerPair can work out if the copy is coalescable
independently of the alias.
This means that we can join with the actual destination interval instead of
using the getOrigDstReg() hack. It is no longer necessary to merge clobber
ranges into subregisters.
llvm-svn: 107695
the example in the testcase, we now generate:
_test1: ## @test1
movss 4(%esp), %xmm0
addss 8(%esp), %xmm0
movl 12(%esp), %eax
movss %xmm0, (%eax)
ret
instead of:
_test1: ## @test1
subl $20, %esp
movl 24(%esp), %eax
movq %mm0, (%esp)
movq %mm0, 8(%esp)
movss (%esp), %xmm0
addss 12(%esp), %xmm0
movss %xmm0, (%eax)
addl $20, %esp
ret
v2f32 support did not work reliably because most of the X86
backend didn't know it was legal. It was apparently only added
to support returning source-level v2f32 values in MMX registers
in x86-32 mode. If ABI compatibility is important on this
GCC-extended-vector type for some reason, then the frontend
should generate IR that returns v2i32 instead of v2f32. However,
we generally don't try very hard to be abi compatible on gcc
extended vectors.
llvm-svn: 107601
v2f32 as legal in 32-bit mode. It is just as terrible there,
but I just care about x86-64 and noone claims it is valuable
in 64-bit mode.
llvm-svn: 107600
- X86 unfolding should check if the instructions being unfolded has memoperands.
If there is no memoperands, then it must assume conservative alignment. If this
would introduce an expensive sse unaligned load / store, then unfoldMemoryOperand
etc. should not unfold the instruction.
llvm-svn: 107509
PrologEpilog code, and use it to determine whether
the asm forces stack alignment or not. gcc consistently
does not do this for GCC-style asms; Apple gcc inconsistently
sometimes does it for asm blocks. There is no
convenient place to put a bit in either the SDNode or
the MachineInstr form, so I've added an extra operand
to each; unlovely, but it does allow for expansion for
more bits, should we need it. PR 5125. Some
existing testcases are affected.
The operand lists of the SDNode and MachineInstr forms
are indexed with awesome mnemonics, like "2"; I may
fix this someday, but not now. I'm not making it any
worse. If anyone is inspired I think you can find all
the right places from this patch.
llvm-svn: 107506
getFunctionAlignment and the corresponding use of that value in the ARM
asm printer, but now we're using the standard asm printer. The result of
this was that function alignments were dropped completely for Thumb functions.
Radar 8143571.
llvm-svn: 107435
Objective-C metadata types which should be marked as "weak", but which the
linker will remove upon final linkage. However, this linkage isn't specific to
Objective-C.
For example, the "objc_msgSend_fixup_alloc" symbol is defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
Currently only supported on Darwin platforms.
llvm-svn: 107433
such a way that debug info for symbols preserved even if symbols are
optimized away by the optimizer.
Add new special pass to remove debug info for such symbols.
llvm-svn: 107416
- Add encode bits for VEX_W
- All 128-bit SSE 1 & SSE2 instructions that are described
in the .td file now have a AVX encoded form already working.
llvm-svn: 107365
A partial redefine needs to be treated like a tied operand, and the register
must be reloaded while processing use operands.
This fixes a bug where partially redefined registers were processed as normal
defs with a reload added. The reload could clobber another use operand if it was
a kill that allowed register reuse.
llvm-svn: 107193
The LowerSubregs pass needs to preserve implicit def operands attached to
EXTRACT_SUBREG instructions when it replaces those instructions with copies.
llvm-svn: 107189
of getPhysicalRegisterRegClass with it.
If we want to make a copy (or estimate its cost), it is better to use the
smallest class as more efficient operations might be possible.
llvm-svn: 107140
There are 2 changes relative to the previous version of the patch:
1) For the "simple" if-conversion case, there's no need to worry about
RemoveExtraEdges not handling an unanalyzable branch. Predicated terminators
are ignored in this context, so RemoveExtraEdges does the right thing.
This might break someday if we ever treat indirect branches (BRIND) as
predicable, but for now, I just removed this part of the patch, because
in the case where we do not add an unconditional branch, we rely on keeping
the fall-through edge to CvtBBI (which is empty after this transformation).
The change relative to the previous patch is:
@@ -1036,10 +1036,6 @@
IterIfcvt = false;
}
- // RemoveExtraEdges won't work if the block has an unanalyzable branch,
- // which is typically the case for IfConvertSimple, so explicitly remove
- // CvtBBI as a successor.
- BBI.BB->removeSuccessor(CvtBBI->BB);
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
2) My patch exposed a bug in the code for merging the tail of a "diamond",
which had previously never been exercised. The code was simply checking that
the tail had a single predecessor, but there was a case in
MultiSource/Benchmarks/VersaBench/dbms where that single predecessor was
neither edge of the diamond. I added the following change to check for
that:
@@ -1276,7 +1276,18 @@
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo TailBBI = BBAnalysis[TailBB->getNumber()];
- if (TailBB->pred_size() == 1 && !TailBBI.HasFallThrough) {
+ bool CanMergeTail = !TailBBI.HasFallThrough;
+ // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
+ // check if there are any other predecessors besides those.
+ unsigned NumPreds = TailBB->pred_size();
+ if (NumPreds > 1)
+ CanMergeTail = false;
+ else if (NumPreds == 1 && CanMergeTail) {
+ MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
+ if (*PI != BBI1->BB && *PI != BBI2->BB)
+ CanMergeTail = false;
+ }
+ if (CanMergeTail) {
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
With these fixes, I was able to run all the SingleSource and MultiSource
tests successfully.
llvm-svn: 107110
have to be registers, per gcc documentation. This affects
the logic for determining what "g" should lower to. PR 7393.
A couple of existing testcases are affected.
llvm-svn: 107079
When an instruction has tied operands and physreg defines, we must take extra
care that the tied operands conflict with neither physreg defs nor uses.
The special treatment is given to inline asm and instructions with tied operands
/ early clobbers and physreg defines.
This fixes PR7509.
llvm-svn: 107043
the returned value after the tail call if it differs from other return
values. The optimal thing to do would be to introduce a phi node for
the return value, but for the moment just fix the miscompile.
llvm-svn: 106947
if-conversion. The RemoveExtraEdges function doesn't work for blocks that
end with unanalyzable branches, so in those cases, the "extra" edges must
be explicitly removed. The CopyAndPredicateBlock and MergeBlocks methods
can also avoid copying successor edges due to branches that have already
been removed. The latter case is especially helpful when MergeBlocks is
called for handling "diamond" if-conversions, where otherwise you can end
up with some weird intermediate states in the CFG. Unfortunately I've
been unable to find cases where this cleanup actually makes a significant
difference in the code. There is one test where we manage to remove an
empty block at the end of a function. Radar 6911268.
llvm-svn: 106939
CopyFromReg nodes for aliasing registers (AX and AL). This confuses the fast
register allocator.
Instead of CopyFromReg(AL), use ExtractSubReg(CopyFromReg(AX), sub_8bit).
This fixes PR7312.
llvm-svn: 106934
introduced in r106343, but only showed up recently (with a particular compiler &
linker combination) because of the particular check, and because we have no
builtin checking for dereferencing the end of an array, which is truly
unfortunate.
llvm-svn: 106908
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
llvm-svn: 106893
address requires a register or secondary load to compute
(most PIC modes). This improves "g" constraint handling. 8015842.
The test from 2007 is attempting to test the fix for PR1761,
but since -relocation-model=static doesn't work on Darwin
x86-64, it was not testing what it was supposed to be testing
and was passing erroneously. Fixed to use Linux x86-64.
llvm-svn: 106779
CoalescerPair can determine if a copy can be coalesced, and which register gets
merged away. The old logic in SimpleRegisterCoalescing had evolved into
something a bit too convoluted.
This second attempt fixes some crashes that only occurred Linux.
llvm-svn: 106769
when the condition is constant. This optimization shouldn't be
necessary, because codegen shouldn't be able to find dead control
paths that the IR-level optimizer can't find. And it's undesirable,
because it encourages bugpoint to leave "br i1 false" branches
in its output. And it wasn't updating the CFG.
I updated all the tests I could, but some tests are too reduced
and I wasn't able to meaningfully preserve them.
llvm-svn: 106748
CoalescerPair can determine if a copy can be coalesced, and which register gets
merged away. The old logic in SimpleRegisterCoalescing had evolved into
something a bit too convoluted.
llvm-svn: 106701
void t(int *cp0, int *cp1, int *dp, int fmd) {
int c0, c1, d0, d1, d2, d3;
c0 = (*cp0++ & 0xffff) | ((*cp1++ << 16) & 0xffff0000);
c1 = (*cp0++ & 0xffff) | ((*cp1++ << 16) & 0xffff0000);
/* ... */
}
It code gens into something pretty bad. But with this change (analogous to the
X86 back-end), it will use ldm and generate few instructions.
llvm-svn: 106693
Given the pattern below as an example:
list<dag> Pattern = [(set RC:$dst, (v4f32 (shufp:src3 RC:$src1,
(mem_frag addr:$src2))))];
The right reference resolving should lead to:
list<dag> Pattern = [(set VR128:$dst, (v4f32 (shufp:src3 VR128:$src1,
(mem_frag addr:$src2))))];
But was yielding:
list<dag> Pattern = [(set VR128:$dst, (v4f32 (shufp VR128:$src1,
(mem_frag addr:$src2))))];
Fix this by passing the right name when creating a new DagInit node.
llvm-svn: 106670
Measurements show that it does not speed up coalescing, so there is no reason
the keep the added complexity around.
Also clean out some unused methods and static functions.
llvm-svn: 106548
opportunities. For example, this lets it emit this:
movq (%rax), %rcx
addq %rdx, %rcx
instead of this:
movq %rdx, %rcx
addq (%rax), %rcx
in the case where %rdx has subsequent uses. It's the same number
of instructions, and usually the same encoding size on x86, but
it appears faster, and in general, it may allow better scheduling
for the load.
llvm-svn: 106493
This allows the fast regiser allocator to remove redundant
register moves.
Update a set of tests that depend on the register allocator
to be linear scan.
llvm-svn: 106420
use sharing map. The reconcileNewOffset logic already forces a
separate use if the kinds differ, so incorporating the kind in the
key means we can track more sharing opportunities.
More sharing means fewer total uses to track, which means smaller
problem sizes, which means the conservative throttles don't kick
in as often.
llvm-svn: 106396
assuming that loops are in canonical form, as ScalarEvolution doesn't
depend on LoopSimplify itself. Also, with indirectbr not all loops can
be simplified. This fixes PR7416.
llvm-svn: 106389
- This fixed a number of bugs in if-converter, tail merging, and post-allocation
scheduler. If-converter now runs branch folding / tail merging first to
maximize if-conversion opportunities.
- Also changed the t2IT instruction slightly. It now defines the ITSTATE
register which is read by instructions in the IT block.
- Added Thumb2 specific hazard recognizer to ensure the scheduler doesn't
change the instruction ordering in the IT block (since IT mask has been
finalized). It also ensures no other instructions can be scheduled between
instructions in the IT block.
This is not yet enabled.
llvm-svn: 106344
instructions, but it doesn't really understand live ranges, so the first
INSERT_SUBREG uses an implicitly defined register.
Fix it in LiveVariableAnalysis by adding the <undef> flag.
llvm-svn: 106333
basic tests.
This has been well tested on Darwin but not elsewhere.
It should work provided the linker correctly resolves
B.W <label in other function>
which it has not seen before, at least from llvm-based
compilers. I'm leaving the arm-tail-calls switch in
until I see if there's any problems because of that;
it might need to be disabled for some environments.
llvm-svn: 106299
LiveVariableAnalysis was a bit picky about a register only being redefined once,
but that really isn't necessary.
Here is an example of chained INSERT_SUBREGs that we can handle now:
68 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1028<kill>, 14
register: %reg1040 +[70,134:0)
76 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1029<kill>, 13
register: %reg1040 replace range with [70,78:1) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,134:0) 0@78-(134) 1@70-(78)
84 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1030<kill>, 12
register: %reg1040 replace range with [78,86:2) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,134:0) 0@86-(134) 1@70-(78) 2@78-(86)
92 %reg1040<def> = INSERT_SUBREG %reg1040, %reg1031<kill>, 11
register: %reg1040 replace range with [86,94:3) RESULT: %reg1040,0.000000e+00 = [70,78:1)[78,86:2)[86,94:3)[94,134:0) 0@94-(134) 1@70-(78) 2@78-(86) 3@86-(94)
rdar://problem/8096390
llvm-svn: 106152
will conflict with another live range. The place which creates this scenerio is
the code in X86 that lowers a select instruction by splitting the MBBs. This
eliminates the need to check from the bottom up in an MBB for live pregs.
llvm-svn: 106066
Early clobbers defining a virtual register were first alocated to a physreg and
then processed as a physreg EC, spilling the virtreg.
This fixes PR7382.
llvm-svn: 105998
Given a copy instruction, CoalescerPair can determine which registers to
coalesce in order to eliminate the copy. It deals with all the subreg fun to
determine a tuple (DstReg, SrcReg, SubIdx) such that:
- SrcReg is a virtual register that will disappear after coalescing.
- DstReg is a virtual or physical register whose live range will be extended.
- SubIdx is 0 when DstReg is a physical register.
- SrcReg can be joined with DstReg:SubIdx.
CoalescerPair::isCoalescable() determines if another copy instruction is
compatible with the same tuple. This fixes some NEON miscompilations where
shuffles are getting coalesced as if they were copies.
The CoalescerPair class will replace a lot of the spaghetti logic in JoinCopy
later.
llvm-svn: 105997
replacing the overly conservative checks that I had introduced recently to
deal with correctness issues. This makes a pretty noticable difference
in our testcases where reg_sequences are used. I've updated one test to
check that we no longer emit the unnecessary subreg moves.
llvm-svn: 105991
symbols as declarations in the X86 backend. This would manifest
on darwin x86-32 as errors like this with -fvisibility=hidden:
symbol '__ZNSbIcED1Ev' can not be undefined in a subtraction expression
This fixes PR7353.
llvm-svn: 105954
i64 and f64 types, but now it also handle Neon vector types, so the f64 result
of VMOVDRR may need to be converted to a Neon type. Radar 8084742.
llvm-svn: 105845
This is a bit of a hack to make inline asm look more like call instructions.
It would be better to produce correct dead flags during isel.
llvm-svn: 105749
the llvm tests :-(
It was failing with
-- Testing: 5324 tests, 8 threads --
Fatal Python error: PyEval_AcquireThread: NULL new thread state
llvm-svn: 105610
scrounging through SCEVUnknown contents and SCEVNAryExpr operands;
instead just do a simple deterministic comparison of the precomputed
hash data.
Also, since this is more precise, it eliminates the need for the slow
N^2 duplicate detection code.
llvm-svn: 105540
In file included from X86InstrInfo.cpp:16:
X86GenInstrInfo.inc:2789: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2790: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2792: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2793: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2808: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2809: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2816: error: integer constant is too large for 'long' type
X86GenInstrInfo.inc:2817: error: integer constant is too large for 'long' type
llvm-svn: 105524
replace an OpA with a widened OpB, it is possible to get new uses of OpA due to CSE
when recursively updating nodes. Since OpA has been processed, the new uses are
not examined again. The patch checks if this occurred and it it did, updates the
new uses of OpA to use OpB.
llvm-svn: 105453
registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
llvm-svn: 105387
expansion is the same as that used by LegalizeDAG.
The resulting code sucks in terms of performance/codesize on x86-32 for a
64-bit operation; I haven't looked into whether different expansions might be
better in general.
llvm-svn: 105378
iSel not properly lowring argument into a well formed DBG_VALUE in some cases is a separate issue and not related to the test in this testcase.
llvm-svn: 105295
that are too large. This causes the freebsd bootloader to be too
large apparently.
It's unclear if this should be an -Os or -Oz thing. Thoughts welcome.
llvm-svn: 105228
optimization level.
This only really affects llc for now because both the llvm-gcc and clang front
ends override the default register allocator. I intend to remove that code later.
llvm-svn: 104904
The goal is to match following 3 lines. In otherwords, a temp. label between to DEBUG_VALUE comments.
;DEBUG_VALUE: bar:x <- undef ## 2010-01-18-Inlined-Debug.c:7
Ltmp1:
;DEBUG_VALUE: foo:__x <- undef ## 2010-01-18-Inlined-Debug.c:5
llvm-svn: 104872
are st(0). These can be encoded using an opcode for storing in st(0) or using
an opcode for storing in st(i), where i can also be 0. To allow testing with
the darwin assembler and get a matching binary the opcode for storing in st(0)
is now used. To do this the same logical trick is use from the darwin assembler
in converting things like this:
fmul %st(0), %st
into this:
fmul %st(0)
by looking for the second operand being X86::ST0 for specific floating point
mnemonics then removing the second X86::ST0 operand. This also has the add
benefit to allow things like:
fmul %st(1), %st
that llvm-mc did not assemble.
llvm-svn: 104634
Mon Ping provided; unfortunately bugpoint failed to
reduce it, but I think it's important to have a test for
this in the suite. 8023512.
llvm-svn: 104624
copying VFP subregs. This exposed a bunch of dead code in the *spill-q.ll
tests, so I tweaked those tests to keep that code from being optimized away.
Radar 7872877.
llvm-svn: 104415
so that it will continue to test what it was meant to test when I commit a
separate change for better support of BUILD_VECTOR and VECTOR_SHUFFLE for Neon.
Fix a DAG combiner crash exposed by this test change.
llvm-svn: 104380
pass after isel instead of being interlaced with it, we can
trust that all the code for a function has been isel'd before
it is run.
The practical impact of this is that we can scan for machine
instr phis instead of doing a fuzzy match on the LLVM BB for
phi nodes. Doing the fuzzy match required knowing when isel
would produce an fp reg stack phi which was gross. It was
also wrong in cases where select got lowered to a branch
tree because cmovs aren't available (PR6828).
Just do the scan on machine phis which is simpler, faster
and more correct. This fixes PR6828.
llvm-svn: 104333
definitions of the virtual register.
This happens when spilling the registers produced by REG_SEQUENCE:
%reg1047:5<def>, %reg1047:6<def>, %reg1047:7<def> = VLD3d8 %reg1033, 0, pred:14, pred:%reg0
The rewriter would spill the register multiple times, dead store elimination
tried to keep up, but ended up cutting the branch it was sitting on.
llvm-svn: 104321
operand on the left, the interesting operand is on the right. This
fixes a bug where LSR was failing to recognize ICmpZero uses,
which led it to be unable to reverse the induction variable in the
attached testcase.
Delete test/CodeGen/X86/stack-color-with-reg-2.ll, because its test
is extremely fragile and hard to meaningfully update.
llvm-svn: 104262
The trouble arises when the result of a vector cmp + sext is then and'ed with all ones. Instcombine will turn it into a vector cmp + zext, dag combiner will miss turning it into a vsetcc and hell breaks loose after that.
Teach dag combine to turn a vector cpm + zest into a vsetcc + and 1. This fixes rdar://7923010.
llvm-svn: 104094
correctly. The Lexer was incorrectly eating the newline casusing it to branch
to address 0. Updated the test case to use a "0:" label and a branch to "0b".
llvm-svn: 104038
- Don't clear weak reference flag, 'as' was only "trying" to do this, it wasn't
actually succeeding.
- Clear the "lazy bound" bit when we mark something external. This corresponds
roughly to the lazy clearing of the bit that 'as' implements in
symbol_table_lookup.
- The exact meaning of these flags appears pretty loose, since 'as' isn't very
consistent. For now we just try to match 'as', we will clean this up one day
hopefully.
llvm-svn: 103964
variable has not yet been used in an expression. This allows us to support a few
cases that show up in real code (mostly because gcc generates it for Objective-C
on Darwin), without giving up a reasonable semantic model for assignment.
llvm-svn: 103950
While that approach works wonders for register pressure, it tends to break
everything.
This should unbreak the arm-linux builder and fix a number of miscompilations.
llvm-svn: 103946
<1xi64> -> i64 to work in MMX registers on hosts where -no-sse
is the default (not mine). The right thing is
to accept this and make i64->f64 conversions go through memory,
but I don't have time right now.
llvm-svn: 103914
replace the check with the appropriate predicate. Modify the testcase to reflect
the correct code. (It should be saving callee-saved registers on the stack
allocated by the calling fuction.)
llvm-svn: 103829
-filetype=obj test, and -filetype=obj leaks a few objects. Added a FIXME, we
need to sort out the ownership model for the various MC objects.
llvm-svn: 103769
be diced into atoms, and adjust getAtom() to take this into account.
- This fixes relocations to symbols in fixed size literal sections, for
example.
llvm-svn: 103532
Sorry for the big change. The path leading up to this patch had some TableGen
changes that I didn't want to commit before I knew they were useful. They
weren't, and this version does not need them.
The fast register allocator now does no liveness calculations. Instead it relies
on kill flags provided by isel. (Currently those kill flags are also ignored due
to isel bugs). The allocation algorithm is supposed to work with any subset of
valid kill flags. More kill flags simply means fewer spills inserted.
Registers are allocated from a working set that contains no aliases. That means
most allocations can be done directly without expensive alias checks. When the
working set runs out of registers we do the full alias check to find new free
registers.
llvm-svn: 103488
- This eliminates getAtomForAddress() (which was a linear search) and
simplifies getAtom().
- This also fixes some correctness problems where local labels at the same
address as non-local labels could be assigned to the wrong atom.
llvm-svn: 103480
This includes a patch by Roman Divacky to fix the initial crash.
Move the actual addition of passes from *PassManager::add to
*PassManager::addImpl. That way, when adding printer passes we won't
recurse infinitely.
Finally, check to make sure that we are actually adding a FunctionPass
to a FunctionPassManager before doing a print before or after it.
Immutable passes are strange in this way because they aren't
FunctionPasses yet they can be and are added to the FunctionPassManager.
llvm-svn: 103425
when it detects undefined behavior. llvm.trap generally codegens into some
thing really small (e.g. a 2 byte ud2 instruction on x86) and debugging this
sort of thing is "nontrivial". For example, we now compile:
void foo() { *(int*)0 = 42; }
into:
_foo:
pushl %ebp
movl %esp, %ebp
ud2
Some may even claim that this is a security hole, though that seems dubious
to me. This addresses rdar://7958343 - Optimizing away null dereference
potentially allows arbitrary code execution
llvm-svn: 103356
with a vector input and output into a shuffle vector. This sort of
sequence happens when the input code stores with one type and reloads
with another type and then SROA promotes to i96 integers, which make
everyone sad.
This fixes rdar://7896024
llvm-svn: 103354
LSRUse's Regs set after all pruning is done, rather than trying
to do it on the fly, which can produce an incomplete result.
This fixes a case where heuristic pruning was stripping all
formulae from a use, which led the solver to enter an infinite
loop.
Also, add a few asserts to diagnose this kind of situation.
llvm-svn: 103328
getConstantFP to accept the two supported long double
target types. This was not the original intent, but
there are other places that assume this works and it's
easy enough to do.
llvm-svn: 103299
and %rcr_, leaving just %cr_ which is what people expect.
Updated the disassembler to support this unified register set.
Added a testcase to verify that the registers continue to be
decoded correctly.
llvm-svn: 103196
Users can write broken code that emits the same label twice with asm renaming,
detect this and emit a fatal backend error instead of aborting.
llvm-svn: 103140
values passed to llvm.dbg.value were not valid for the intrinsic, it
might have caused trouble one day if the verifier ever started checking
for valid debug info.
llvm-svn: 103038
instructions which have no direct register usage.
Darwin 'as' accepts:
add $0, (%rax)
but rejects
mov $0, (%rax)
for example.
Given that, only accept suffix matches which match exactly one form. We still
need to emit nice diagnostics for failures...
llvm-svn: 103015
- The idea is that when a match fails, we just try to match each of +'b', +'w',
+'l'. If exactly one matches, we assume this is a mnemonic prefix and accept
it. If all match, we assume it is width generic, and take the 'l' form.
- This would be a horrible hack, if it weren't so simple. Therefore it is an
elegant solution! Chris gets the credit for this particular elegant
solution. :)
- Next step to making this more robust is to have the X86 matcher generate the
mnemonic prefix information. Ideally we would also compute up-front exactly
which mnemonic to attempt to match, but this may require more custom code in
the matcher than is really worth it.
llvm-svn: 103012
RAUW of a global variable with a local variable in function F,
if function local metadata M in function G was using the global
then M would become function-local to both F and G, which is not
allowed. See the testcase for an example. Fixed by detecting
this situation and zapping the metadata operand when it occurs.
llvm-svn: 103007
instructions as the Mac OS X darwin assembler. Some of which like 'fcoml'
assembled to different opcodes. While some of the suffixes were just different.
llvm-svn: 102958
caused the a pushl instruction to be incorrectly encoding using only two bytes
of immediate, causing the following 2 instruction bytes to be part of the 32-bit
immediate value. Also fixed the one byte form of push to be used when the
immediate would fit in a signed extended byte. Lastly changed the names to not
include the 32 of PUSH32 since they actually push the size of the stack pointer.
llvm-svn: 102951
beneficial cases. See the changes in test/CodeGen/X86/tail-opts.ll and
test/CodeGen/ARM/ifcvt2.ll for details.
The fix is to change HashEndOfMBB to hash at most one instruction,
instead of trying to apply heuristics about when it will be profitable to
consider more than one instruction. The regular tail-merging heuristics
are already prepared to handle the same cases, and they're more precise.
Also, make test/CodeGen/ARM/ifcvt5.ll and
test/CodeGen/Thumb2/thumb2-branch.ll slightly more complex so that they
continue to test what they're intended to test.
And, this eliminates the problem in
test/CodeGen/Thumb2/2009-10-15-ITBlockBranch.ll, the testcase from
PR5204. Update it accordingly.
llvm-svn: 102907
halting analysis, it is illegal to delete a call to a read-only function.
The correct solution is almost certainly to add a "must halt" attribute and
only allow deletions in its presence.
XFAIL the relevant testcase for now.
llvm-svn: 102831
that can have a big effect :). The first is to enable the
iterative SCC passmanager juice that kicks in when the
scc passmgr detects that a function pass has devirtualized
a call. In this case, it will rerun all the passes it
manages on the SCC, up to the iteration count limit (4). This
is useful because a function pass may devirualize a call, and
we want the inliner to inline it, or pruneeh to infer stuff
about it, etc.
The second patch is to add *all* call sites to the
DevirtualizedCalls list the inliner uses. This list is
about to get renamed, but the jist of this is that the
inliner now reconsiders *all* inlined call sites as candidates
for further inlining. The intuition is this that in cases
like this:
f() { g(1); } g(int x) { h(x); }
We analyze this bottom up, and may decide that it isn't
profitable to inline H into G. Next step, we decide that it is
profitable to inline G into F, and do so, which means that F
now calls H. Even though the call from G -> H may not have been
profitable to inline, the call from F -> H may be (in this case
because a constant allows folding etc).
In my spot checks, this doesn't have a big impact on code. For
example, the LLC output for 252.eon grew from 0.02% (from
317252 to 317308) and 176.gcc actually shrunk by .3% (from 1525612
to 1520964 bytes). 252.eon never iterated in the SCC Passmgr,
176.gcc iterated at most 1 time.
llvm-svn: 102823
that appear due to inlining a callee as candidates for
futher inlining, but a recent patch made it do this if
those call sites were indirect and became direct.
Unfortunately, in bizarre cases (see testcase) doing this
can cause us to infinitely inline mutually recursive
functions into callers not in the cycle. Fix this by
keeping track of the inline history from which callsite
inline candidates got inlined from.
This shouldn't affect any "real world" code, but is required
for a follow on patch that is coming up next.
llvm-svn: 102822
were still inlining self-recursive functions into other functions.
Inlining a recursive function into itself has the potential to
reduce recursion depth by a factor of 2, inlining a recursive
function into something else reduces recursion depth by exactly
1. Since inlining a recursive function into something else is a
weird form of loop peeling, turn this off.
The deleted testcase was added by Dale in r62107, since then
we're leaning towards not inlining recursive stuff ever. In any
case, if we like inlining recursive stuff, it should be done
within the recursive function itself to get the algorithm
recursion depth win.
llvm-svn: 102798
indexes could be of a different value type. Or not even using the same SDNode
for the constant (weird, I know). Compare the actual values instead of the
pointers.
llvm-svn: 102791
call that might throw. The landing pad assumes that all registers are in stack
slots.
We used to spill those dirty CSRs after the call, and the stack slots would be
wrong when arriving at the landing pad.
llvm-svn: 102770
of different register classes. e.g.
%reg1048:3<def> = EXTRACT_SUBREG %RAX<kill>, 3
Where %reg1048 is a GR32 register. This is not impossible to handle, but it is
pretty hard and very rare.
This should unbreak the dragonegg builder.
llvm-svn: 102672