Coverage hooks that take less-than-64-bit-integers as parameters need the
zeroext parameter attribute (http://llvm.org/docs/LangRef.html#paramattrs)
to make sure they are properly extended by the x86_64 ABI.
llvm-svn: 308296
Coverage instrumentation which does not instrument full post-dominators
and full-dominators may skip valid paths, as the reasoning for skipping
blocks may become circular.
This patch fixes that, by only skipping
full post-dominators with multiple predecessors, as such predecessors by
definition can not be full-dominators.
llvm-svn: 303827
Coverage instrumentation has an optimization not to instrument extra
blocks, if the pass is already "accounted for" by a
successor/predecessor basic block.
However (https://github.com/google/sanitizers/issues/783) this
reasoning may become circular, which stops valid paths from having
coverage.
In the worst case this can cause fuzzing to stop working entirely.
This change simplifies logic to something which trivially can not have
such circular reasoning, as losing valid paths does not seem like a
good trade-off for a ~15% decrease in the # of instrumented basic blocks.
llvm-svn: 303698
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299699
This prevents crashes when attempting to instrument functions containing
C++ try.
Sanitizer coverage will still fail at runtime when an exception is
thrown through a sancov instrumented function, but that seems marginally
better than what we have now. The full solution is to color the blocks
in LLVM IR and only instrument blocks that have an unambiguous color,
using the appropriate token.
llvm-svn: 298662
On Windows, the symbols "___stop___sancov_guards" and "___start___sancov_guards"
are not defined automatically. So, we need to take a different approach.
We define 3 sections:
Section ".SCOV$A" will only hold a variable ___start___sancov_guard.
Section ".SCOV$M" will hold the main data.
Section ".SCOV$Z" will only hold a variable ___stop___sancov_guards.
When linking, they will be merged sorted by the characters after the $, so we
can use the pointers of the variables ___[start|stop]___sancov_guard to know the
actual range of addresses of that section.
In this diff, I updated instrumentation to include all the guard arrays in
section ".SCOV$M".
Differential Revision: https://reviews.llvm.org/D28434
llvm-svn: 293987
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
Summary:
Without tree pruning clang has 2,667,552 points.
Wiht only dominators pruning: 1,515,586.
With both dominators & predominators pruning: 1,340,534.
Resubmit of r262103.
Differential Revision: http://reviews.llvm.org/D18341
llvm-svn: 264003
Summary:
These dependencies would be used in the future to reduce the number
of instrumented blocks(http://reviews.llvm.org/rL262103)
This is submitted as a separate CL because of previous problems with
ARM.
Subscribers: aemerson
Differential Revision: http://reviews.llvm.org/D18227
llvm-svn: 263797
llvm::getDISubprogram walks the instructions in a function, looking for one in the scope of the current function, so that it can find the !dbg entry for the subprogram itself.
Now that !dbg is attached to functions, this should not be necessary. This patch changes all uses to just query the subprogram directly on the function.
Ideally this should be NFC, but in reality its possible that a function:
has no !dbg (in which case there's likely a bug somewhere in an opt pass), or
that none of the instructions had a scope referencing the function, so we used to not find the !dbg on the function but now we will
Reviewed by Duncan Exon Smith.
Differential Revision: http://reviews.llvm.org/D18074
llvm-svn: 263184
Summary:
Without tree pruning clang has 2,667,552 points.
Wiht only dominators pruning: 1,515,586.
With both dominators & predominators pruning: 1,340,534.
Differential Revision: http://reviews.llvm.org/D17671
llvm-svn: 262103
Summary:
This is the first simple attempt to reduce number of coverage-
instrumented blocks.
If a basic block dominates all its successors, then its coverage
information is useless to us. Ingore such blocks if
santizer-coverage-prune-tree option is set.
Differential Revision: http://reviews.llvm.org/D17626
llvm-svn: 261949
Summary: Similar to the change we applied to ASan. The same test case works.
Reviewers: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11961
llvm-svn: 245067
DebugLoc::getFnDebugLoc() should soon be removed. Also,
getDISubprogram() might become more effective soon and wouldn't need to
scan debug locations at all, if function-level metadata would be emitted
by Clang.
llvm-svn: 239586
Second attempt; instead of using a named local variable, passing
arguments directly to `createSanitizerCtorAndInitFunctions` worked
on Windows.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8780
llvm-svn: 236951
Summary:
This gives frontend more precise control over collected coverage
information. User can still override these options by passing
-mllvm flags.
No functionality change.
Test Plan: regression test suite.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9539
llvm-svn: 236687
Summary:
Instead of making a local copy of `checkInterfaceFunction` for each
sanitizer, move the function in a common place.
Reviewers: kcc, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8775
llvm-svn: 234220
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
Introduce -mllvm -sanitizer-coverage-8bit-counters=1
which adds imprecise thread-unfriendly 8-bit coverage counters.
The run-time library maps these 8-bit counters to 8-bit bitsets in the same way
AFL (http://lcamtuf.coredump.cx/afl/technical_details.txt) does:
counter values are divided into 8 ranges and based on the counter
value one of the bits in the bitset is set.
The AFL ranges are used here: 1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+.
These counters provide a search heuristic for single-threaded
coverage-guided fuzzers, we do not expect them to be useful for other purposes.
Depending on the value of -fsanitize-coverage=[123] flag,
these counters will be added to the function entry blocks (=1),
every basic block (=2), or every edge (=3).
Use these counters as an optional search heuristic in the Fuzzer library.
Add a test where this heuristic is critical.
llvm-svn: 231166
APIs and replace it and numerous booleans with an option struct.
The critical edge splitting API has a really large surface of flags and
so it seems worth burning a small option struct / builder. This struct
can be constructed with the various preserved analyses and then flags
can be flipped in a builder style.
The various users are now responsible for directly passing along their
analysis information. This should be enough for the critical edge
splitting to work cleanly with the new pass manager as well.
This API is still pretty crufty and could be cleaned up a lot, but I've
focused on this change just threading an option struct rather than
a pass through the API.
llvm-svn: 226456