Summary:
G_GEP is rather poorly named. It's a simple pointer+scalar addition and
doesn't support any of the complexities of getelementptr. I therefore
propose that we rename it. There's a G_PTR_MASK so let's follow that
convention and go with G_PTR_ADD
Reviewers: volkan, aditya_nandakumar, bogner, rovka, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, hiraditya, jrtc27, atanasyan, arphaman, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69734
selectImpl is able to select G_FSQRT when we set bank for vector
operands to fprb. Add detailed tests.
Note: G_FSQRT is generated from llvm-ir intrinsics llvm.sqrt.*,
and at the moment MIPS is not able to generate this intrinsic for
vector type (some targets generate vector llvm.sqrt.* from calls
to a builtin function).
__builtin_msa_fsqrt_<format> will be transformed into G_FSQRT
in legalizeIntrinsic and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69376
selectImpl is able to select G_FABS when we set bank for vector
operands to fprb. Add detailed tests.
Note: G_FABS is generated from llvm-ir intrinsics llvm.fabs.*,
and at the moment MIPS is not able to generate this intrinsic for
vector type (some targets generate vector llvm.fabs.* from calls
to a builtin function).
We can handle fabs using __builtin_msa_fmax_a_<format> and passing
same vector as both arguments. __builtin_msa_fmax_a_<format> will
be directly selected into FMAX_A_<format> in legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D69346
Select vector G_FADD, G_FSUB, G_FMUL and G_FDIV for MIPS32 with MSA. We
have to set bank for vector operands to fprb and selectImpl will do the
rest. __builtin_msa_fadd_<format>, __builtin_msa_fsub_<format>,
__builtin_msa_fmul_<format> and __builtin_msa_fdiv_<format> will be
transformed into G_FADD, G_FSUB, G_FMUL and G_FDIV in legalizeIntrinsic
respectively and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69340
Select vector G_SDIV, G_SREM, G_UDIV and G_UREM for MIPS32 with MSA. We
have to set bank for vector operands to fprb and selectImpl will do the
rest. __builtin_msa_div_s_<format>, __builtin_msa_mod_s_<format>,
__builtin_msa_div_u_<format> and __builtin_msa_mod_u_<format> will be
transformed into G_SDIV, G_SREM, G_UDIV and G_UREM in legalizeIntrinsic
respectively and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69333
Select vector G_MUL for MIPS32 with MSA. We have to set bank
for vector operands to fprb and selectImpl will do the rest.
Manual selection of G_MUL is now done for gprb only.
__builtin_msa_mulv_<format> will be transformed into G_MUL
in legalizeIntrinsic and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69310
Select vector G_SUB for MIPS32 with MSA. We have to set bank
for vector operands to fprb and selectImpl will do the rest.
__builtin_msa_subv_<format> will be transformed into G_SUB
in legalizeIntrinsic and selected in the same way.
__builtin_msa_subvi_<format> will be directly selected into
SUBVI_<format> in legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D69306
Select vector G_ADD for MIPS32 with MSA. We have to set bank
for vector operands to fprb and selectImpl will do the rest.
__builtin_msa_addv_<format> will be transformed into G_ADD
in legalizeIntrinsic and selected in the same way.
__builtin_msa_addvi_<format> will be directly selected into
ADDVI_<format> in legalizeIntrinsic. MIR tests for it have
unnecessary additional copies. Capture current state of tests
with run-pass=legalizer with a test in test/CodeGen/MIR/Mips.
Differential Revision: https://reviews.llvm.org/D68984
llvm-svn: 375501
Add vector MSA register classes to fprb, they are 128 bit wide.
MSA instructions use the same registers for both integer and floating
point operations. Therefore we only need to check for vector element
size during legalization or instruction selection.
Add helper function in MipsLegalizerInfo and switch to legalIf
LegalizeRuleSet to keep legalization rules compact since they depend
on MipsSubtarget and presence of MSA.
fprb is assigned to all vector operands.
Move selectLoadStoreOpCode to MipsInstructionSelector in order to
reduce number of arguments.
Differential Revision: https://reviews.llvm.org/D68867
llvm-svn: 374872
CC_Mips doesn't accept vararg functions for O32, so we have to explicitly
use CC_Mips_FixedArg.
For lowerCall we now properly figure out whether callee function is vararg
or not, this has no effect for O32 since we always use CC_Mips_FixedArg.
For lower formal arguments we need to copy arguments in register to stack
and save pointer to start for argument list into MipsMachineFunction
object so that G_VASTART could use it during instruction select.
For vacopy we need to copy content from one vreg to another,
load and store are used for that purpose.
Differential Revision: https://reviews.llvm.org/D67756
llvm-svn: 372555
IRTranslator creates G_DYN_STACKALLOC instruction during expansion of
alloca when argument that tells number of elements to allocate on stack
is a virtual register. Use default lowering for MIPS32.
Differential Revision: https://reviews.llvm.org/D67440
llvm-svn: 371728
G_IMPLICIT_DEF is used for both integer and floating point implicit-def.
Handle G_IMPLICIT_DEF as ambiguous opcode in MipsRegisterBankInfo.
Select G_IMPLICIT_DEF for MIPS32.
Differential Revision: https://reviews.llvm.org/D67439
llvm-svn: 371727
Select G_INTRINSIC_W_SIDE_EFFECTS for Intrinsic::trap for MIPS32
via legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D67180
llvm-svn: 371055
Add lower for G_FPTOUI. Algorithm is similar to the SDAG version
in TargetLowering::expandFP_TO_UINT.
Lower G_FPTOUI for MIPS32.
Differential Revision: https://reviews.llvm.org/D66929
llvm-svn: 370431
r351882 allows different type for shift amount then result and value
being shifted. Fix MIPS Legalizer rules to take r351882 into account.
Differential Revision: https://reviews.llvm.org/D66203
llvm-svn: 369510
Add NarrowScalar for G_TRUNC when NarrowTy is half the size of source.
NarrowScalar G_TRUNC to s32 for MIPS32.
Differential Revision: https://reviews.llvm.org/D66202
llvm-svn: 369509
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487
G_JUMP_TABLE and G_BRJT appear from translation of switch statement.
Select these two instructions for MIPS32, both pic and non-pic.
Differential Revision: https://reviews.llvm.org/D65861
llvm-svn: 368274
I plan on adding memcpy optimizations in the GlobalISel pipeline, but we can't
do that unless we delay lowering to actual function calls. This patch changes
the translator to generate G_INTRINSIC_W_SIDE_EFFECTS for these functions, and
then have each target specify that using the new custom legalizer for intrinsics
hook that they want it expanded it a libcall.
Differential Revision: https://reviews.llvm.org/D64895
llvm-svn: 366516
Add narrowScalar to half of original size for G_ICMP.
ClampScalar G_ICMP's operands 2 and 3 to to s32.
Select G_ICMP for pointers for MIPS32. Pointer compare is same
as for integers, it is enough to declare them as legal type.
Differential Revision: https://reviews.llvm.org/D64856
llvm-svn: 366317
Select gprb or fprb when def/use register operand of G_PHI is
used/defined by either:
copy to/from physical register or
instruction with only one mapping available for that use/def operand.
Integer s64 phi is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64351
llvm-svn: 365494
Select gprb or fprb when def/use register operand of G_SELECT is
used/defined by either:
copy to/from physical register or
instruction with only one mapping available for that use/def operand.
Integer s64 select is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
For selection of floating point s32 or s64 select it is enough to set
fprb of appropriate size and selectImpl will do the rest.
Differential Revision: https://reviews.llvm.org/D64350
llvm-svn: 365492
Select gprb or fprb when loaded value is used by either:
copy to physical register or
instruction with only one mapping available for that use operand.
Load of integer s64 is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64269
llvm-svn: 365323
Select gprb or fprb when stored value is defined by either:
copy from physical register or
instruction with only one mapping available for that def operand.
Store of integer s64 is handled with narrowScalar when mapping is applied,
produced artifacts are combined away. Manually set gprb to all register
operands of instructions created during narrowScalar.
Differential Revision: https://reviews.llvm.org/D64268
llvm-svn: 365322
Narrow Scalar G_MUL for MIPS32.
Revisit NarrowScalar implementation in LegalizerHelper.
Introduce new helper function multiplyRegisters.
It performs generic multiplication of values held in multiple registers.
Generated instructions use only types NarrowTy and i1.
Destination can be same or two times size of the source.
Differential Revision: https://reviews.llvm.org/D58824
llvm-svn: 355814
Select G_BR and G_BRCOND for MIPS32.
Unconditional branch G_BR does not have register operand,
for that reason we only add tests.
Since conditional branch G_BRCOND compares register to zero on MIPS32,
explicit extension must be performed on i1 condition in order to set
high bits to appropriate value.
Differential Revision: https://reviews.llvm.org/D58182
llvm-svn: 354022
Make behavior of G_LOAD in widenScalar same as for G_ZEXTLOAD and
G_SEXTLOAD. That is perform widenScalarDst to size given by the target
and avoid additional checks in common code. Targets can reorder or add
additional rules in LegalizeRuleSet for the opcode to achieve desired
behavior.
Select extending load that does not have specified type of extension
into zero extending load.
Select truncating store that stores number of bytes indicated by size
in MachineMemoperand.
Differential Revision: https://reviews.llvm.org/D57454
llvm-svn: 353520
Lower G_USUBO and G_USUBE. Add narrowScalar for G_SUB.
Legalize and select G_SUB for MIPS 32.
Differential Revision: https://reviews.llvm.org/D53416
llvm-svn: 352351
Select zero extending and sign extending load for MIPS32.
Use size from MachineMemOperand to determine number of bytes to load.
Differential Revision: https://reviews.llvm.org/D57099
llvm-svn: 352038