The patch adds a new LLVMContext::diagnose that can be used to communicate to
the front-end, if any, that something of interest happened.
The diagnostics are supported by a new abstraction, the DiagnosticInfo class.
The base class contains the following information:
- The kind of the report: What this is about.
- The severity of the report: How bad this is.
This patch also adds 2 classes:
- DiagnosticInfoInlineAsm: For inline asm reporting. Basically, this diagnostic
will be used to switch to the new diagnostic API for LLVMContext::emitError.
- DiagnosticStackSize: For stack size reporting. Comes as a replacement of the
hard coded warning in PEI.
This patch also features dynamic diagnostic identifiers. In other words plugins
can use this infrastructure for their own diagnostics (for more details, see
getNextAvailablePluginDiagnosticKind).
This patch introduces a new DiagnosticHandlerTy and a new DiagnosticContext in
the LLVMContext that should be set by the front-end to be able to map these
diagnostics in its own system.
http://llvm-reviews.chandlerc.com/D2376
<rdar://problem/15515174>
llvm-svn: 197438
target independent.
Most of the x86 specific stackmap/patchpoint handling was necessitated by the
use of the native address-mode format for frame index operands. PEI has now
been modified to treat stackmap/patchpoint similarly to DEBUG_INFO, allowing
us to use a simple, platform independent register/offset pair for frame
indexes on stackmap/patchpoints.
Notes:
- Folding is now platform independent and automatically supported.
- Emiting patchpoints with direct memory references now just involves calling
the TargetLoweringBase::emitPatchPoint utility method from the target's
XXXTargetLowering::EmitInstrWithCustomInserter method. (See
X86TargetLowering for an example).
- No more ugly platform-specific operand parsers.
This patch shouldn't change the generated output for X86.
llvm-svn: 195944
We can have a FrameSetup in one basic block and the matching FrameDestroy
in a different basic block when we have struct byval. In that case, SPAdj
is not zero at beginning of the basic block.
Modify PEI to correctly set SPAdj at beginning of each basic block using
DFS traversal. We used to assume SPAdj is 0 at beginning of each basic block.
PEI had an assert SPAdjCount || SPAdj == 0.
If we have a Destroy <n> followed by a Setup <m>, PEI will assert failure.
We can add an extra condition to make sure the pairs are matched:
The pairs start with a FrameSetup.
But since we are doing a much better job in the verifier, this patch removes
the check in PEI.
PR16393
llvm-svn: 186364
SystemZ wants normal register scavenging slots, as close to the stack or
frame pointer as possible. The only reason it was using custom code was
because PrologEpilogInserter assumed an x86-like layout, where the frame
pointer is at the opposite end of the frame from the stack pointer.
This meant that when frame pointer elimination was disabled,
the slots ended up being as close as possible to the incoming
stack pointer, which is the opposite of what we want on SystemZ.
This patch adds a new knob to say which layout is used and converts
SystemZ to use target-independent scavenging slots. It's one of the pieces
needed to support frame-to-frame MVCs, where two slots might be required.
The ABI requires us to allocate 160 bytes for calls, so one approach
would be to use that area as temporary spill space instead. It would need
some surgery to make sure that the slot isn't live across a call though.
I stuck to the "isFPCloseToIncomingSP - ..." style comment on the
"do what the surrounding code does" principle. The FP case is already
covered by several Systemz/frame-* tests, which fail without the
PrologueEpilogueInserter change, so no new ones are needed.
No behavioural change intended.
llvm-svn: 185696
Rather than using the full power of target-specific addressing modes in
DBG_VALUEs with Frame Indicies, simply use Frame Index + Offset. This
reduces the complexity of debug info handling down to two
representations of values (reg+offset and frame index+offset) rather
than three or four.
Ideally we could ensure that frame indicies had been eliminated by the
time we reached an assembly or dwarf generation, but I haven't spent the
time to figure out where the FIs are leaking through into that & whether
there's a good place to convert them. Some FI+offset=>reg+offset
conversion is done (see PrologEpilogInserter, for example) which is
necessary for some SelectionDAG assumptions about registers, I believe,
but it might be possible to make this a more thorough conversion &
ensure there are no remaining FIs no matter how instruction selection
is performed.
llvm-svn: 184066
in functions which call __builtin_unwind_init()
__builtin_unwind_init() is an undocumented gcc intrinsic which has this effect,
and is used in libgcc_eh.
Goes part of the way toward fixing PR8541.
llvm-svn: 183984
instantiation issue with non-standard type.
Add a backend option to warn on a given stack size limit.
Option: -mllvm -warn-stack-size=<limit>
Output (if limit is exceeded):
warning: Stack size limit exceeded (<actual size>) in <functionName>.
The longer term plan is to hook that to a clang warning.
PR:4072
<rdar://problem/13987214>.
llvm-svn: 183595
Option: -mllvm -warn-stack-size=<limit>
Output (if limit is exceeded):
warning: Stack size limit exceeded (<actual size>) in <functionName>.
The longer term plan is to hook that to a clang warning.
PR:4072
<rdar://problem/13987214>
llvm-svn: 183552
This fixes PEI as previously described, but correctly handles the case where
the instruction defining the virtual register to be scavenged is the first in
the block. Arnold provided me with a bugpoint-reduced test case, but even that
seems too large to use as a regression test. If I'm successful in cleaning it
up then I'll commit that as well.
Original commit message:
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
llvm-svn: 178919
Reverting because this breaks one of the LTO builders. Original commit message:
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
llvm-svn: 178916
This change fixes a bug that I introduced in r178058. After a register is
scavenged using one of the available spills slots the instruction defining the
virtual register needs to be moved to after the spill code. The scavenger has
already processed the defining instruction so that registers killed by that
instruction are available for definition in that same instruction. Unfortunately,
after this, the scavenger needs to iterate through the spill code and then
visit, again, the instruction that defines the now-scavenged register. In order
to avoid confusion, the register scavenger needs the ability to 'back up'
through the spill code so that it can again process the instructions in the
appropriate order. Prior to this fix, once the scavenger reached the
just-moved instruction, it would assert if it killed any registers because,
having already processed the instruction, it believed they were undefined.
Unfortunately, I don't yet have a small test case. Thanks to Pranav Bhandarkar
for diagnosing the problem and testing this fix.
llvm-svn: 178845
The previous algorithm could not deal properly with scavenging multiple virtual
registers because it kept only one live virtual -> physical mapping (and
iterated through operands in order). Now we don't maintain a current mapping,
but rather use replaceRegWith to completely remove the virtual register as
soon as the mapping is established.
In order to allow the register scavenger to return a physical register killed
by an instruction for definition by that same instruction, we now call
RS->forward(I) prior to eliminating virtual registers defined in I. This
requires a minor update to forward to ignore virtual registers.
These new features will be tested in forthcoming commits.
llvm-svn: 178058
This patch lets the register scavenger make use of multiple spill slots in
order to guarantee that it will be able to provide multiple registers
simultaneously.
To support this, the RS's API has changed slightly: setScavengingFrameIndex /
getScavengingFrameIndex have been replaced by addScavengingFrameIndex /
isScavengingFrameIndex / getScavengingFrameIndices.
In forthcoming commits, the PowerPC backend will use this capability in order
to implement the spilling of condition registers, and some special-purpose
registers, without relying on r0 being reserved. In some cases, spilling these
registers requires two GPRs: one for addressing and one to hold the value being
transferred.
llvm-svn: 177774
Add the current PEI register scavenger as a parameter to the
processFunctionBeforeFrameFinalized callback.
This change is necessary in order to allow the PowerPC target code to
set the register scavenger frame index after the save-area offset
adjustments performed by processFunctionBeforeFrameFinalized. Only
after these adjustments have been made is it possible to estimate
the size of the stack frame.
llvm-svn: 177108
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
llvm-svn: 175788
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
llvm-svn: 171253
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
All callers of these functions really want the isPhysRegOrOverlapUsed()
functionality which also checks aliases. For historical reasons, targets
without register aliases were calling isPhysRegUsed() instead.
Change isPhysRegUsed() to also check aliases, and switch all
isPhysRegOrOverlapUsed() callers to isPhysRegUsed().
llvm-svn: 166117
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
Passes after RegAlloc should be able to rely on MRI->getNumVirtRegs() == 0.
This makes sharing code for pre/postRA passes more robust.
Now, to check if a pass is running before the RA pipeline begins, use MRI->isSSA().
To check if a pass is running after the RA pipeline ends, use !MRI->getNumVirtRegs().
PEI resets virtual regs when it's done scavenging.
PTX will either have to provide its own PEI pass or assign physregs.
llvm-svn: 151032
Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.
While cleaning up declarations, cleaned up comments (sorry for large diff).
llvm-svn: 150100
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
X86. Modify the pass added in the previous patch to call this new
code.
This new prologues generated will call a libgcc routine (__morestack)
to allocate more stack space from the heap when required
Patch by Sanjoy Das.
llvm-svn: 138812
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
llvm-svn: 123044
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
base registers were required. This will allow for slightly better packing
of the locals when alignment padding is necessary after callee saved registers.
llvm-svn: 111508
the local block. Resolve references to those indices to a new base register.
For simplification and testing purposes, a new virtual base register is
allocated for each frame index being resolved. The result is truly horrible,
but correct, code that's good for exercising the new code paths.
Next up is adding thumb1 support, which should be very simple. Following that
will be adding base register re-use and implementing a reasonable ARM
heuristic for when a virtual base register should be generated at all.
llvm-svn: 111315
mapping. Have the local block track its alignment requirement, and then
apply that when the block itself is allocated. Previously, offsets could
get adjusted in PEI to be different, relative to one another, than the
block allocation thought they would be, which defeats the point of doing
the allocation this way. Continuing rdar://8277890
llvm-svn: 111197
experimental pass that allocates locals relative to one another before
register allocation and then assigns them to actual stack slots as a block
later in PEI. This will eventually allow targets with limited index offset
range to allocate additional base registers (not just FP and SP) to
more efficiently reference locals, as well as handle situations where
locals cannot be referenced via SP or FP at all (dynamic stack realignment
together with variable sized objects, for example). It's currently
incomplete and almost certainly buggy. Work in progress.
Disabled by default and gated via the -enable-local-stack-alloc command
line option.
rdar://8277890
llvm-svn: 111059
protectors, to be near the stack protectors on the stack. Accomplish this by
tagging the stack object with a predicate that indicates that it would trigger
this. In the prolog-epilog inserter, assign these objects to the stack after the
stack protector but before the other objects.
llvm-svn: 109481
the simplification of frame index register scavenging to not have to check
for available registers directly and instead just let scavengeRegister()
handle it.
llvm-svn: 107880
(if there are any) and use the one which remains available for the longest
rather than just using the first one. This should help enable better re-use
of the loaded frame index values. rdar://7318760
llvm-svn: 107847
new basic blocks, and if used as a function argument, that can cause call frame
setup / destroy pairs to be split across a basic block boundary. That prevents
us from doing a simple assertion to check that the pairs match and alloc/
dealloc the same amount of space. Modify the assertion to only check the
amount allocated when there are matching pairs in the same basic block.
rdar://8022442
llvm-svn: 107517
PrologEpilog code, and use it to determine whether
the asm forces stack alignment or not. gcc consistently
does not do this for GCC-style asms; Apple gcc inconsistently
sometimes does it for asm blocks. There is no
convenient place to put a bit in either the SDNode or
the MachineInstr form, so I've added an extra operand
to each; unlovely, but it does allow for expansion for
more bits, should we need it. PR 5125. Some
existing testcases are affected.
The operand lists of the SDNode and MachineInstr forms
are indexed with awesome mnemonics, like "2"; I may
fix this someday, but not now. I'm not making it any
worse. If anyone is inspired I think you can find all
the right places from this patch.
llvm-svn: 107506
the variable actually tracks.
N.B., several back-ends are using "HasCalls" as being synonymous for something
that adjusts the stack. This isn't 100% correct and should be looked into.
llvm-svn: 103802
is preparatory to having PEI's scavenged frame index value reuse logic
properly distinguish types of frame values (e.g., whether the value is
stack-pointer relative or frame-pointer relative).
No functionality change.
llvm-svn: 98086
126.gcc nightly tests. These failures uncovered latent bugs that machine DCE
could remove one half of a stack adjust down/up pair, causing PEI to assert.
This update fixes that, and the tests now pass.
llvm-svn: 96822
for ARM to just check if a function has a FP to determine if it's safe
to simplify the stack adjustment pseudo ops prior to eliminating frame
indices. Allow targets to override the default behavior and does so for ARM
and Thumb2.
llvm-svn: 96634
created. This ensures it's updated at all time. It means targets which perform
dynamic stack alignment would know whether it is required and whether frame
pointer register cannot be made available register allocation.
This is a fix for rdar://7625239. Sorry, I can't create a reasonably sized test
case.
llvm-svn: 96069
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687
slots. The AsmPrinter will use this information to determine whether to
print a spill/reload comment.
Remove default argument values. It's too easy to pass a wrong argument
value when multiple arguments have default values. Make everything
explicit to trap bugs early.
Update all targets to adhere to the new interfaces..
llvm-svn: 87022
indexed via the stack pointer, even if a frame pointer is present. Update the
heuristic to place it nearest the stack pointer in that case, rather than
nearest the frame pointer.
llvm-svn: 85474
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.
eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.
ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.
llvm-svn: 83467
For the AAPCS ABI, SP must always be 4-byte aligned, and at any "public
interface" it must be 8-byte aligned. For the older ARM APCS ABI, the stack
alignment is just always 4 bytes. For X86, we currently align SP at
entry to a function (e.g., to 16 bytes for Darwin), but no stack alignment
is needed at other times, such as for a leaf function.
After discussing this with Dan, I decided to go with the approach of adding
a new "TransientStackAlignment" field to TargetFrameInfo. This value
specifies the stack alignment that must be maintained even in between calls.
It defaults to 1 except for ARM, where it is 4. (Some other targets may
also want to set this if they have similar stack requirements. It's not
currently required for PPC because it sets targetHandlesStackFrameRounding
and handles the alignment in target-specific code.) The existing StackAlignment
value specifies the alignment upon entry to a function, which is how we've
been using it anyway.
llvm-svn: 82767
interest for this, as it currently reserves a register rather than using
the scavenger for matierializing constants as needed.
Instead of scavenging registers on the fly while eliminating frame indices,
new virtual registers are created, and then a scavenged collectively in a
post-pass over the function. This isolates the bits that need to interact
with the scavenger, and sets the stage for more intelligent use, and reuse,
of scavenged registers.
For the time being, this is disabled by default. Once the bugs are worked out,
the current scavenging calls in replaceFrameIndices() will be removed and
the post-pass scavenging will be the default. Until then,
-enable-frame-index-scavenging enables the new code. Currently, only the
Thumb1 back end is set up to use it.
llvm-svn: 82734
LocalAreaOffset. (We don't have any of those right now.)
PEI::calculateFrameObjectOffsets includes the absolute value of the
LocalAreaOffset in the cumulative offset value used to calculate the
stack frame size. It then adds the raw value of the LocalAreaOffset
to the stack size. For a StackGrowsDown target, that raw value is negative
and has the effect of cancelling out the absolute value that was added
earlier, but that obviously won't work for a StackGrowsUp target. Change
to subtract the absolute value of the LocalAreaOffset.
llvm-svn: 82693
In a naked function, the flag is never set and getPristineRegs() returns an
empty list. That means naked functions are able to clobber callee saved
registers, but that is the whole point of naked functions.
This fixes PR4716.
llvm-svn: 79096
shouldn't do AU.setPreservesCFG(), because even though CodeGen passes
don't modify the LLVM IR CFG, they may modify the MachineFunction CFG,
and passes like MachineLoop are registered with isCFGOnly set to true.
llvm-svn: 77691
failures when building assorted projects with clang.
--- Reverse-merging r77654 into '.':
U include/llvm/CodeGen/Passes.h
U include/llvm/CodeGen/MachineFunctionPass.h
U include/llvm/CodeGen/MachineFunction.h
U include/llvm/CodeGen/LazyLiveness.h
U include/llvm/CodeGen/SelectionDAGISel.h
D include/llvm/CodeGen/MachineFunctionAnalysis.h
U include/llvm/Function.h
U lib/Target/CellSPU/SPUISelDAGToDAG.cpp
U lib/Target/PowerPC/PPCISelDAGToDAG.cpp
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/MachineVerifier.cpp
U lib/CodeGen/MachineFunction.cpp
U lib/CodeGen/PrologEpilogInserter.cpp
U lib/CodeGen/MachineLoopInfo.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
D lib/CodeGen/MachineFunctionAnalysis.cpp
D lib/CodeGen/MachineFunctionPass.cpp
U lib/CodeGen/LiveVariables.cpp
llvm-svn: 77661
stack alignment right when it is. This is not
ideal but conservatively correct. Adjust a test
to compensate for changed stack offset value.
gcc.apple/asm-block-57.c
llvm-svn: 76120
registers based on dynamic conditions. For example, X86 EBP/RBP, when used as
frame register has to be spilled in the first fixed object. It should inform
PEI this so it doesn't get allocated another stack object. Also, it should not
be spilled as other callee-saved registers but rather its spilling and restoring
are being handled by emitPrologue and emitEpilogue. Avoid spilling it twice.
llvm-svn: 75116
of exception handling builtin sjlj targets in functions turns out not to
be necessary. Marking the intrinsic implementation in the .td file as
defining all registers is sufficient to get the context saved properly by
the containing function.
llvm-svn: 71743
a supporting preliminary patch for GCC-compatible SjLJ exception handling. Note that these intrinsics are not designed to be invoked directly by the user, but
rather used by the front-end as target hooks for exception handling.
llvm-svn: 71610
- moved shrink wrapping code from PrologEpilogInserter.cpp to
new file ShrinkWrapping.cpp.
- moved PEI pass definition into new shared header PEI.h.
llvm-svn: 71588
- reduces _static_ callee saved register spills
and restores similar to Chow's original algorithm.
- iterative implementation with simple heuristic
limits to mitigate compile time impact.
- handles placing spills/restores for multi-entry,
multi-exit regions in the Machine CFG without
splitting edges.
- passes test-suite in LLCBETA mode.
Added contains() method to ADT/SparseBitVector.
llvm-svn: 71438
- stackprotector_prologue creates a stack object and stores the guard there.
- stackprotector_epilogue reads the stack guard from the stack position created
by stackprotector_prologue.
- The PrologEpilogInserter was changed to make sure that the stack guard is
first on the stack frame.
llvm-svn: 58791
<16 x float> is 64-byte aligned (for some reason),
which gets us into the stack realignment code. The
computation changing FP-relative offsets to SP-relative
was broken, assiging a spill temp to a location
also used for parameter passing. This
fixes it by rounding up the stack frame to a multiple
of the largest alignment (I concluded it wasn't fixable
without doing this, but I'm not very sure.)
llvm-svn: 52750
- Cleaned up how the prologue-epilogue inserter loops over the instructions.
- Instead of restarting the processing of an instruction if we remove an
implicit kill, just update the end iterator and make sure that the iterator
isn't incremented.
llvm-svn: 47870
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
llvm-svn: 46659
that it is cheap and efficient to get.
Move a variety of predicates from TargetInstrInfo into
TargetInstrDescriptor, which makes it much easier to query a predicate
when you don't have TII around. Now you can use MI->getDesc()->isBranch()
instead of going through TII, and this is much more efficient anyway. Not
all of the predicates have been moved over yet.
Update old code that used MI->getInstrDescriptor()->Flags to use the
new predicates in many places.
llvm-svn: 45674
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
llvm-svn: 45467
This patch fills the last necessary bits to enable exceptions
handling in LLVM. Currently only on x86-32/linux.
In fact, this patch adds necessary intrinsics (and their lowering) which
represent really weird target-specific gcc builtins used inside unwinder.
After corresponding llvm-gcc patch will land (easy) exceptions should be
more or less workable. However, exceptions handling support should not be
thought as 'finished': I expect many small and not so small glitches
everywhere.
llvm-svn: 39855
argument space for call sites in the function immediately on entry to the
current function. This eliminates the need for add/sub sp brackets around call
sites. However, this is not always a good idea. If the "call frame" is large and
the target load / store instructions have small immediate field to encode sp
offset, this can cause poor codegen. In the worst case, this can make it
impossible to scavenge a register if the reserved spill slot is pushed too far
apart from sp / fp.
llvm-svn: 36607