In moveToVALU(), move to vector ALU is performed, all instrs in
the use chain will be visited. We do not want the same node to be
pushed to the visit worklist more than once.
Differential Revision: https://reviews.llvm.org/D34726
llvm-svn: 308039
Since GFX9 supports denorm modes for v_min_f32/v_max_f32 that
is possible to further optimize fcanonicalize and remove it
if applied to min/max given their operands are known not to be
an sNaN or that sNaNs are not supported.
Additionally we can remove fcanonicalize if denorms are supported
for the VT and we know that its argument is never a NaN.
Differential Revision: https://reviews.llvm.org/D35335
llvm-svn: 307976
We are using multiplication by 1.0 to flush denormals and quiet sNaNs.
That is possible to omit this multiplication if source of the
fcanonicalize instruction is known to be flushed/quieted, i.e.
if it comes from another instruction known to do the normalization
and we are using IEEE mode to quiet sNaNs.
Differential Revision: https://reviews.llvm.org/D35218
llvm-svn: 307848
The issue is not if the value is pcrel. It is whether we have a
relocation or not.
If we have a relocation, the static linker will select the upper
bits. If we don't have a relocation, we have to do it.
llvm-svn: 307730
An instruction that has an immediate operand can't reach
this point. This is only called for a freshly shrunk instruction,
which prevously couldn't have had a literal constant operand.
This was also not conservative enough since it woudl also have
had to filter other constant-like inputs like frame indexes.
llvm-svn: 307574
Adds loop expansions for known-size and unknown-sized memcpy calls, allowing the
target to provide the operand types through TTI callbacks. The default values
for the TTI callbacks use int8 operand types and matches the existing behaviour
if they aren't overridden by the target.
Differential revision: https://reviews.llvm.org/D32536
llvm-svn: 307346
Regardless of relaxation options such as -cl-fast-relaxed-math
we are producing rather long code for fdiv via amdgcn_fdiv_fast
intrinsic. This intrinsic is used to replace fdiv with 2.5ulp
metadata and does not handle denormals, thus believed to be fast.
An fdiv instruction can also have fast math flag either by itself
or together with fpmath metadata. Clang used with a relaxation flag
always produces both metadata and fast flag:
%div = fdiv fast float %v, %0, !fpmath !12!12 = !{float 2.500000e+00}
Current implementation ignores fast flag and favors metadata. An
instruction with just fast flag would be lowered to a fastest rcp +
mul, but that never happen on practice because of described mutual
clang and BE behavior.
This change allows an "fdiv fast" to be always lowered as rcp + mul.
Differential Revision: https://reviews.llvm.org/D34844
llvm-svn: 307308
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.
llvm-svn: 307292
Depending on the compare code that can be either an argument of
sext or negate of it. This helps to avoid v_cndmask_b64 instruction
for sext. A reversed value can be further simplified and folded into
its parent comparison if possible.
Differential Revision: https://reviews.llvm.org/D34545
llvm-svn: 306446
Also factored out function to check if a boolean is an already
deserialized value which does not require v_cndmask_b32 to be
loaded. Added binary logical operators to its check.
Differential Revision: https://reviews.llvm.org/D34500
llvm-svn: 306439
Summary:
1. Instruction V_CVT_U32_F32 allow omod operand (see SIInstrInfo.td:1435). In fact this operand shouldn't be allowed here. This fix checks if SDWA pseudo instruction has OMod operand and then copy it.
2. There were several problems with support of VOPC instructions in SDWA peephole pass.
Reviewers: tstellar, arsenm, vpykhtin, airlied, kzhuravl
Subscribers: wdng, nhaehnle, yaxunl, dstuttard, tpr, sarnex, t-tye
Differential Revision: https://reviews.llvm.org/D34626
llvm-svn: 306413
Summary:
With scalar stores, M0 is clobbered and therefore marked as implicitly
defined. However, it is also dead.
This fixes an assertion when the Greedy Register Allocator decides to
optimize a spill/restore pair away again (via tryHintsRecoloring).
Reviewers: arsenm
Subscribers: qcolombet, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D33319
llvm-svn: 306375
This should not be treated as a different version of
private_segment_buffer. These are distinct things with
different uses and register classes, and requires the
function argument info to have more context about the
function's type and environment.
Also add missing test coverage for the intrinsic, and
emit an error for HSA. This also encovers that the intrinsic
is broken unless there happen to be stack objects.
llvm-svn: 306264
The intention of processFixupValue is not to redefine the semantics of
MCExpr. It is odd enough that a expression lowers to a PCRel MCExpr or
not depending on what it looks like. At least it is a local hack now.
I left a fix for anyone trying to figure out what producers should be
producing a different expression.
llvm-svn: 306200
processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177
Intrinsic already existed for llvm.SI.tbuffer.store
Needed tbuffer.load and also re-implementing the intrinsic as llvm.amdgcn.tbuffer.*
Added CodeGen tests for the 2 new variants added.
Left the original llvm.SI.tbuffer.store implementation to avoid issues with existing code
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, tpr
Differential Revision: https://reviews.llvm.org/D30687
llvm-svn: 306031
Summary:
Despite that this instructions are listed in VOP2, they are treated as VOP3 in specs. They should not support SDWA.
There are no real instructions for them, but there are pseudo instructions.
Reviewers: arsenm, vpykhtin, cfang
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D34403
llvm-svn: 305999
Summary:
Added support based on merged SDWA pseudo instructions. Now peephole allow one scalar operand, omod and clamp modifiers.
Added several subtarget features for GFX9 SDWA.
This diff also contains changes from D34026.
Depends D34026
Reviewers: vpykhtin, rampitec, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D34241
llvm-svn: 305986
If one of the arguments of adde/sube is zero we can fold another
add/sub into it.
Differential Revision: https://reviews.llvm.org/D34374
llvm-svn: 305964
This simplification allows to avoid generating v_cndmask_b32
to serialize condition code between compare and use.
Differential Revision: https://reviews.llvm.org/D34300
llvm-svn: 305962
Summary: Previously there were two separate pseudo instruction for SDWA on VI and on GFX9. Created one pseudo instruction that is union of both of them. Added verifier to check that operands conform either VI or GFX9.
Reviewers: dp, arsenm, vpykhtin
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, artem.tamazov
Differential Revision: https://reviews.llvm.org/D34026
llvm-svn: 305886
If there is an immediate operand we shall not shrink V_SUBB_U32
and V_ADDC_U32, it does not fit e32 encoding.
Differential Revison: https://reviews.llvm.org/D34291
llvm-svn: 305840
Before it was possible to partially fold use instructions
before the defs. After the xor is folded into a copy, the same
mov can end up in the fold list twice, so on the second attempt
it will fail expecting to see a register to fold.
llvm-svn: 305821
The offset may not be an inline immediate, so this needs
to be materialized into a register. The post-RA run of
SIShrinkInstructions is able to fold it later if it can.
llvm-svn: 305761
It adds it for the target after inlining but before SROA where
we can get most out of it.
Differential Revision: https://reviews.llvm.org/D34366
llvm-svn: 305759
Summary: The method TargetTransformInfo::getRegisterBitWidth() is declared const, but the type erasing implementation classes (TargetTransformInfo::Concept & TargetTransformInfo::Model) that were introduced by Chandler in https://reviews.llvm.org/D7293 do not have the method declared const. This is an NFC to tidy up the const consistency between TTI and its implementation.
Reviewers: chandlerc, rnk, reames
Reviewed By: reames
Subscribers: reames, jfb, arsenm, dschuff, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, llvm-commits
Differential Revision: https://reviews.llvm.org/D33903
llvm-svn: 305189
Summary:
Alloca promotion pass not dealing with non-canonical input
Added some additional checks so the pass simply backs-off forms it can't deal with (non-canonical)
Also added some test cases in non-canonical form to check that it no longer crashes
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D31710
llvm-svn: 305079
The V_MQSAD_PK_U16_U8, V_QSAD_PK_U16_U8, and V_MQSAD_U32_U8 take more than 1 pass in hardware. For these three instructions, the destination registers must be different than all sources, so that the first pass does not overwrite sources for the following passes.
Differential Revision: https://reviews.llvm.org/D33783
llvm-svn: 304998
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Fixes bug #33302. Pass did not account that Src1 of max instruction
can be an immediate.
Differential Revision: https://reviews.llvm.org/D33884
llvm-svn: 304696
Remove dependency of SDWA pass on SIShrinkInstructions.
The goal is to move SDWA even higher in the stack to avoid second run
of MachineLICM, MachineCSE and SIFoldOperands.
Also added handling to preserve original src modifiers.
Differential Revision: https://reviews.llvm.org/D33860
llvm-svn: 304665
Summary:
These are mostly legal, but will probably need special lowering for some
cases.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, rovka, kristof.beyls, igorb, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D33791
llvm-svn: 304628
SIFoldOperands can commute operands even if no folding was done.
This change is to preserve IR is no folding was done.
Differential Revision: https://reviews.llvm.org/D33802
llvm-svn: 304625
-enable-si-insert-waitcnts=1 becomes the default
-enable-si-insert-waitcnts=0 to use old pass
Differential Revision: https://reviews.llvm.org/D33730
llvm-svn: 304551
This adds a callback to the LLVMTargetMachine that lets target indicate
that they do not pass the machine verifier checks in all cases yet.
This is intended to be a temporary measure while the targets are fixed
allowing us to enable the machine verifier by default with
EXPENSIVE_CHECKS enabled!
Differential Revision: https://reviews.llvm.org/D33696
llvm-svn: 304320
- new waitcnt pass remains off by default; -enable-si-insert-waitcnts=1 to enable it
- fix handling of PERMUTE ops
- fix insertion of waitcnt instrs at function begin/end ( port of analogous code that was added to old waitcnt pass )
- add new test
Differential Revision: https://reviews.llvm.org/D33114
llvm-svn: 304311
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
An encoding does not allow to use SDWA in an instruction with
scalar operands, either literals or SGPRs. That is however possible
to copy these operands into a VGPR first.
Several copies of the value are produced if multiple SDWA conversions
were done. To cleanup MachineLICM (to hoist copies out of loops),
MachineCSE (to remove duplicate copies) and SIFoldOperands (to replace
SGPR to VGPR copy with immediate copy right to the VGPR) runs are added
after the SDWA pass.
Differential Revision: https://reviews.llvm.org/D33583
llvm-svn: 304219
[AMDGPU] add intrinsic for s_getpc
Summary: The s_getpc instruction is exposed as intrinsic llvm.amdgcn.s.getpc.
Patch by Tim Corringham
llvm-svn: 304031
Various address spaces on the SI and R600 subtargets have stricter
limits on memory access size that other address spaces. Use
canMergeStoresTo predicate to prevent the DAGCombiner from creating
these stores as they will be split up during legalization.
llvm-svn: 303767
This reverts commit e065977c4b5f68ab845400b256f6a3822b1325fa.
It doesn't work. S_LOAD_DWORD_IMM_ci and friends aren't selected by any of
the patterns, so it was putting 32-bit literals into the 8-bit field.
llvm-svn: 303754
This fixes 17 of the 41 -verify-machineinstrs test failures identified in PR33045
Differential Revision: https://reviews.llvm.org/D33451
llvm-svn: 303691
Summary:
Promoting Alloca to Vector and Promoting Alloca to LDS are two independent handling of Alloca and should not affect each other.
As a result, we should not give up promoting to vector if there is not enough LDS. This patch factors out the local memory usage
related checking out and replace it after the calling convention checking.
Reviewer:
arsenm
Differential Revision:
http://reviews.llvm.org/D33139
llvm-svn: 303684
Perform DAG combine:
and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
Where nb is a number of trailing zeroes in mask.
It replaces two instructions with two and BFE is generally a more
expensive one. However this is only done if we are selecting a byte
or word at an aligned boundary which results in a proper SDWA
operand pattern. It is only done if SDWA is supported.
TODO: improve SDWA pass to actually convert this pattern. It is not
done now because we have an immediate in the instruction, which has
be moved into a VGPR.
Differential Revision: https://reviews.llvm.org/D33455
llvm-svn: 303681
This is just a cleanup. Also, it adds checking that ByteCount is aligned to 4.
Reviewers: arsenm, nhaehnle, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D28994
llvm-svn: 303658
shl (or|add x, c2), c1 => or|add (shl x, c1), (c2 << c1)
This allows to fold a constant into an address in some cases as
well as to eliminate second shift if the expression is used as
an address and second shift is a result of a GEP.
Differential Revision: https://reviews.llvm.org/D33432
llvm-svn: 303641
Summary:
Added separate pseudo and real instruction for GFX9 SDWA instructions.
Currently supports only in assembler.
Depends D32493
Reviewers: vpykhtin, artem.tamazov
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D33132
llvm-svn: 303620
Turn expensive 64 bit shift into 32 bit if shift does not overflow int:
shl (ext x) => zext (shl x)
Differential Revision: https://reviews.llvm.org/D33367
llvm-svn: 303569
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
Summary:
There should be no intesection between SDWA operands and potential MIs. E.g.:
```
v_and_b32 v0, 0xff, v1 -> src:v1 sel:BYTE_0
v_and_b32 v2, 0xff, v0 -> src:v0 sel:BYTE_0
v_add_u32 v3, v4, v2
```
In that example it is possible that we would fold 2nd instruction into 3rd (v_add_u32_sdwa) and then try to fold 1st instruction into 2nd (that was already destroyed). So if SDWAOperand is also a potential MI then do not apply it.
Reviewers: vpykhtin, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D32804
llvm-svn: 303347
Partially implement callee-side for arguments and return values.
byval doesn't work properly, and most likely sret or other on-stack
return values most as well.
llvm-svn: 303308
In order for an arbitrary callee to access an object
in a caller's stack frame, the 32-bit offset used as
the private pointer needs to be relative to the kernel's
scratch wave offset register.
Convert to this by finding the difference from the current
stack frame and scaling by the wavefront size.
llvm-svn: 303303
Check the MachinePointerInfo for whether the access is
supposed to be relative to the stack pointer.
No tests because this is used in later commits implementing
calls.
llvm-svn: 303301
Avoids instructions to pack a vector when the source is really
a scalar being broadcast.
Also be smarter and look for per-component fneg.
Doesn't yet handle scalar from upper half of register
or other swizzles.
llvm-svn: 303291
Using LIS can be quite expensive, so caching of calculated region
live-ins and pressure is implemented. It does two things:
1. Caches the info for the second stage when we schedule with
decreased target occupancy.
2. Tracks the basic block from top to bottom thus eliminating the
need to scan whole register file liveness at every region split
in the middle of the block.
The scheduling is now done in 3 stages instead of two, with the first
one being really a no-op and only used to collect scheduling regions
as sent by the scheduler driver.
There is no functional change to the current behavior, only compilation
speed is affected. In general computeBlockPressure() could be simplified
if we switch to backward RP tracker, because scheduler sends regions
within a block starting from the last upward. We could use a natural
order of upward tracker to seamlessly change between regions of the same
block, since live reg set of a previous tracked region would become a
live-out of the next region. That however requires fixing upward tracker
to properly account defs and uses of the same instruction as both are
contributing to the current pressure. When we converge on the produced
pressure we should be able to switch between them back and forth. In
addition, backward tracker is less expensive as it uses LIS in recede
less often than forward uses it in advance.
At the moment the worst known case compilation time has improved from 26
minutes to 8.5.
Differential Revision: https://reviews.llvm.org/D33117
llvm-svn: 303184
This factors register pressure estimation mechanism from the
GCNSchedStrategy into the forward tracker to unify interface
with other strategies and expose it to other interested phases.
Differential Revision: https://reviews.llvm.org/D33105
llvm-svn: 303179
Summary:
We should not change volatile loads/stores in promoting alloca to vector.
Reviewers:
arsenm
Differential Revision:
http://reviews.llvm.org/D33107
llvm-svn: 302943
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
We don't use it and it was removed in gfx9, and the encoding
bit repurposed.
Additionally actually using it requires changing the output register
class, which wasn't done anyway.
llvm-svn: 302814
Earlier fix D32572 introduced a bug where live-ins were calculated
for basic block instead of scheduling region. This change fixes it.
Differential Revision: https://reviews.llvm.org/D33086
llvm-svn: 302812
This is a step toward having statically allocated instruciton mapping.
We are going to tablegen them eventually, so let us reflect that in
the API.
NFC.
llvm-svn: 302316
This adds routines for reseting KnownBits to unknown, making the value all zeros or all ones. It also adds methods for querying if the value is zero, all ones or unknown.
Differential Revision: https://reviews.llvm.org/D32637
llvm-svn: 302262
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
Summary of changes:
- corrected vmcnt, expcnt, lgkmcnt helpers to checks their argument for truncation;
- added saturated versions of these helpers.
See bug 32711 for details: https://bugs.llvm.org//show_bug.cgi?id=32711
Reviewers: artem.tamazov, vpykhtin
Differential Revision: https://reviews.llvm.org/D32546
llvm-svn: 301439
Commits were:
"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"
The changes assumed pointers are 8 byte aligned on all architectures.
llvm-svn: 301429
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.
Reviewers: dblaikie, davide
Reviewed By: davide
Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D32266
llvm-svn: 301424
Rely on MachineRegisterInfo's knowledge of used physical
registers.
Move flat_scratch initialization earlier, so the uses are visible
when making these decisions.
This will make it easier to add another reserved register
at the end for the stack pointer rather than handling another
special case.
llvm-svn: 301254
In call sequence setups, there may not be a frame index base
and the pointer is a constant offset from the frame
pointer / scratch wave offset register.
llvm-svn: 301230
Merges equivalent initializations of M0 and hoists them into a common
dominator block. Technically the same code can be used with any
register, physical or virtual.
Differential Revision: https://reviews.llvm.org/D32279
llvm-svn: 301228
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
Currently the operand type for ATOMIC_FENCE assumes value type of a pointer in address space 0.
This is fine for most targets. However for amdgcn target, the size of pointer in address space 0
depends on triple environment. For amdgiz environment, it is 64 bit but for other environment it is
32 bit. On the other hand, amdgcn target expects 32 bit fence operands independent of the target
triple environment. Therefore a hook is need in target lowering for getting the fence operand type.
This patch has no effect on targets other than amdgcn.
Differential Revision: https://reviews.llvm.org/D32186
llvm-svn: 301215
Fixes traps in any block besides the entry block,
and fixes depending on a live-in physical register
by using a virtual register copy.
Also happens to stop emitting a nop in the case
debug trap is not supported.
llvm-svn: 301206
Summary:
Fix a compiler bug when the lane select happens to end up in a VGPR.
Clarify the semantic of the corresponding intrinsic to be that of
the corresponding GLSL: the lane select must be uniform across a
wave front, otherwise results are undefined.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D32343
llvm-svn: 301197
SI_MASKED_UNREACHABLE does not have machine instruction encoding.
It needs special handling in AMDGPUAsmPrinter::EmitInstruction like some
other pseudo instructions.
This patch fixes compilation failure of RadeonRays.
Differential Revision: https://reviews.llvm.org/D32364
llvm-svn: 301025
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
This recommits r300932 and r300930, which was causing dag-combine to
loop forever. The problem was that optimizeLogicalImm was returning
true even when there was no change to the immediate node (which happened
when the immediate was all zeros or ones), which caused dag-combine to
push and pop the same node to the work list over and over again without
making any progress.
This commit fixes the bug by returning false early in optimizeLogicalImm
if the immediate is all zeros or ones. Also, it changes the code to
compare the immediate with 0 or Mask rather than calling
countPopulation.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 301019
It seems that r300930 was creating an infinite loop in dag-combine when
compling the following file:
MultiSource/Benchmarks/MiBench/consumer-typeset/z21.c
llvm-svn: 300940
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
This recommits r300913, which broke bots because I didn't fix a call to
ShrinkDemandedConstant in SIISelLowering.cpp after changing the APIs of
TargetLoweringOpt and TargetLowering.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 300930
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 300913
This is inserted directly in the text section. The relocation
for the function ends up resolving to the beginning of the
amd_kernel_code_t header rather than the actual function
entry point.
Also skip some of the comments for initialization
that only makes sense for kernels.
llvm-svn: 300736
Avoid looping through program to determine register counts.
This avoids needing to look at regmask operands.
Also fixes some counting errors with flat_scr when there
are no stack objects.
llvm-svn: 300482
While the incoming stack for a kernel is 256-byte aligned,
this refers to the base address of the entire wave. This isn't
useful information for most of codegen. Fixes unnecessarily
aligning stack objects in callees.
llvm-svn: 300481
If a kernel's pointer argument is known to be readonly
set access qualifier accordingly. This allows RT not to
flush caches before dispatches.
Differential Revision: https://reviews.llvm.org/D32091
llvm-svn: 300362
Add hasParamAttribute() and use it instead of hasAttribute(ArgNo+1,
Kind) everywhere.
The fact that the AttributeList index for an argument is ArgNo+1 should
be a hidden implementation detail.
NFC
llvm-svn: 300272
In many cases ds operations can be combined even if offsets do not
fit into 8 bit encoding. What it takes is to adjust base address.
Differential Revision: https://reviews.llvm.org/D31993
llvm-svn: 300227
If workgroup size is known inform llvm about range returned by local
id and local size queries.
Differential Revision: https://reviews.llvm.org/D31804
llvm-svn: 300102
The unused dummy src2_modifiers is missing, so it crashes
when trying to print it.
I tried to fully remove src2_modifiers, but there are some
irritations in the places where it is converted to mad since
it starts to require modifying use lists while iterating over
them.
llvm-svn: 299861
Increase threshold to unroll a loop which contains an "if" statement
whose condition defined by a PHI belonging to the loop. This may help
to eliminate if region and potentially even PHI itself, saving on
both divergence and registers used for the PHI.
Add a small bonus for each of such "if" statements.
Differential Revision: https://reviews.llvm.org/D31693
llvm-svn: 299779
- corrected DS_GWS_* opcodes (see VI_Shader_Programming#16.pdf for detailed description)
- address operand is not used
- several opcodes have data operand
- all opcodes have offset modifier
- DS_AND_SRC2_B32: corrected typo in mnemo
- DS_WRAP_RTN_F32 replaced with DS_WRAP_RTN_B32
- added CI/VI opcodes:
- DS_CONDXCHG32_RTN_B64
- DS_GWS_SEMA_RELEASE_ALL
- added VI opcodes:
- DS_CONSUME
- DS_APPEND
- DS_ORDERED_COUNT
Differential Revision: https://reviews.llvm.org/D31707
llvm-svn: 299767
Summary:
Difference beetween PreRegAlloc() and MachineSSAOptimization() are that the former is run despite of -O0 optimization level. In my undestanding SiShrinkInstructions and SDWAPeephole shouldn't run when optimizations are disabled.
With this change order of passes will not change.
Reviewers: arsenm, vpykhtin, rampitec
Subscribers: qcolombet, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D31705
llvm-svn: 299757
This is possible in ways that are not compiler bugs,
so stop asserting on them.
This emits an extra error when emitting objects when it
can't encode the new pseudo, but I'm not sure that matters.
llvm-svn: 299712
Our final address space mapping is to let constant address space to be 4 to match nvptx.
However for now we will make it 2 to avoid unnecessary work in FE/BE/devlib
about intrinsics returning constant pointers.
Differential Revision: https://reviews.llvm.org/D31770
llvm-svn: 299690
If a workgroup size is known to be not greater than wavefront size
the s_barrier instruction is not needed since all threads are guarantied
to come to the same point at the same time.
Differential Revision: https://reviews.llvm.org/D31731
llvm-svn: 299659
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
Add a new node to act as a fancy bitcast from f16 operations to
i32 that implicitly zero the high 16-bits of the result.
Alternatively could try making v2f16 legal and canonicalizing
on build_vectors.
llvm-svn: 299246
Currently ComputeNumSignBits returns the minimum number of sign bits for all elements of vector data, when we may only be interested in one/some of the elements.
This patch adds a DemandedElts argument that allows us to specify the elements we actually care about. The original ComputeNumSignBits implementation calls with a DemandedElts demanding all elements to match current behaviour. Scalar types set this to 1.
I've only added support for BUILD_VECTOR and EXTRACT_VECTOR_ELT so far, all others will default to demanding all elements but can be updated in due course.
Followup to D25691.
Differential Revision: https://reviews.llvm.org/D31311
llvm-svn: 299219
Previously compiler often extracted common immediates into specific register, e.g.:
```
%vreg0 = S_MOV_B32 0xff;
%vreg2 = V_AND_B32_e32 %vreg0, %vreg1
%vreg4 = V_AND_B32_e32 %vreg0, %vreg3
```
Because of this SDWA peephole failed to find SDWA convertible pattern. E.g. in previous example this could be converted into 2 SDWA src operands:
```
SDWA src: %vreg2 src_sel:BYTE_0
SDWA src: %vreg4 src_sel:BYTE_0
```
With this change peephole check if operand is either immediate or register that is copy of immediate.
llvm-svn: 299202
Follow up to D25691, this sets up the plumbing necessary to support vector demanded elements support in known bits calculations in target nodes.
Differential Revision: https://reviews.llvm.org/D31249
llvm-svn: 299201
What we really want to do is distinguish functions that may
be called by other functions, and graphics shaders are not
called kernels.
llvm-svn: 299140
If set to false it does not remove global aliases. With this parameter
set to false it should be safe to run the pass before link.
Differential Revision: https://reviews.llvm.org/D31489
llvm-svn: 299108
This is less important than increase threshold for private memory,
but still brings performance improvements in a wide range of tests.
Unrolling more for local memory serves three purposes: it allows
to combine ds operations if offset becomes static, saves registers
used for offsets in case of static offsets, and allows better lds
latency hiding.
Differential Revision: https://reviews.llvm.org/D31412
llvm-svn: 298948
This is incorrect to record region boundaries before scheduling,
it may change after scheduling. As a result second pass may see less
instructions to schedule than it should.
Differential Revision: https://reviews.llvm.org/D31434
llvm-svn: 298945
Previously it was covered by the internalization. It turns out we cannot
run internalizer in FE, it break separate compilation tests. Thus early
inliner gets its own option.
Differential Revision: https://reviews.llvm.org/D31429
llvm-svn: 298935
Enabled clamp and omod for v_cvt_* opcodes which have src0 of an integer type
Reviewers: vpykhtin, arsenm
Differential Revision: https://reviews.llvm.org/D31327
llvm-svn: 298852
As we introduced target triple environment amdgiz and amdgizcl, the address
space values are no longer enums. We have to decide the value by target triple.
The basic idea is to use struct AMDGPUAS to represent address space values.
For address space values which are not depend on target triple, use static
const members, so that they don't occupy extra memory space and is equivalent
to a compile time constant.
Since the struct is lightweight and cheap, it can be created on the fly at
the point of usage. Or it can be added as member to a pass and created at
the beginning of the run* function.
Differential Revision: https://reviews.llvm.org/D31284
llvm-svn: 298846
Switch data layout by target triple environment amdgiz and amdgizcl indicating using of an address space mapping in which generic address space is 0.
amdgiz is for non-OpenCL environment where generic address space is 0.
amdgizcl is for OpenCL environment where generic address space is 0.
Differential Revision: https://reviews.llvm.org/D31211
llvm-svn: 298758
If the branch condition for a loop was a phi which itself
was fed from a phi from a loop, it isn't safe to try
to delete the phi until after the loop is handled.
llvm-svn: 298737
StructurizeCFG can't handle cases with multiple
returns creating regions with multiple exits.
Create a copy of UnifyFunctionExitNodes that only
unifies exit nodes that skips exit nodes
with uniform branch sources.
llvm-svn: 298729
- Rename runtime metadata -> code object metadata
- Make metadata not flow
- Switch enums to use ScalarEnumerationTraits
- Cleanup and move AMDGPUCodeObjectMetadata.h to AMDGPU/MCTargetDesc
- Introduce in-memory representation for attributes
- Code object metadata streamer
- Create metadata for isa and printf during EmitStartOfAsmFile
- Create metadata for kernel during EmitFunctionBodyStart
- Finalize and emit metadata to .note during EmitEndOfAsmFile
- Other minor improvements/bug fixes
Differential Revision: https://reviews.llvm.org/D29948
llvm-svn: 298552
This is used for a specific type of return to a shader part's
epilog code. Rename to try avoiding confusion from a true
call's return.
llvm-svn: 298452
This adds a parameter to @llvm.objectsize that makes it return
conservative values if it's given null.
This fixes PR23277.
Differential Revision: https://reviews.llvm.org/D28494
llvm-svn: 298430
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Summary:
First iteration of SDWA peephole.
This pass tries to combine several instruction into one SDWA instruction. E.g. it converts:
'''
V_LSHRREV_B32_e32 %vreg0, 16, %vreg1
V_ADD_I32_e32 %vreg2, %vreg0, %vreg3
V_LSHLREV_B32_e32 %vreg4, 16, %vreg2
'''
Into:
'''
V_ADD_I32_sdwa %vreg4, %vreg1, %vreg3 dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:WORD_1 src1_sel:DWORD
'''
Pass structure:
1. Iterate over machine instruction in basic block and try to apply "SDWA patterns" to each of them. SDWA patterns match machine instruction into either source or destination SDWA operand. E.g. ''' V_LSHRREV_B32_e32 %vreg0, 16, %vreg1''' is matched to source SDWA operand '''%vreg1 src_sel:WORD_1'''.
2. Iterate over found SDWA operands and find instruction that could be potentially coverted into SDWA. E.g. for source SDWA operand potential instruction are all instruction in this basic block that uses '''%vreg0'''
3. Iterate over all potential instructions and check if they can be converted into SDWA.
4. Convert instructions to SDWA.
This review contains basic implementation of SDWA peephole pass. This pass requires additional testing fot both correctness and performance (no performance testing done).
There are several ways this pass can be improved:
1. Make this pass work on whole function not only basic block. As I can see this can be done right now without changes to pass.
2. Introduce more SDWA patterns
3. Introduce mnemonics to limit when SDWA patterns should apply
Reviewers: vpykhtin, alex-t, arsenm, rampitec
Subscribers: wdng, nhaehnle, mgorny
Differential Revision: https://reviews.llvm.org/D30038
llvm-svn: 298365
This is direct port of HSAILAliasAnalysis pass, just cleaned for
style and renamed.
Differential Revision: https://reviews.llvm.org/D31103
llvm-svn: 298172
If the loop condition was an i1 phi with a constantexpr input, this
would add a loop intrinsic fed by a phi dependent on a call to
if.break in the same block. Insert the call in the loop header.
llvm-svn: 298121
Move backend internal intrinsics along with the rest of the
normal intrinsics, and use the Intrinsic::getDeclaration
API instead of manually constructing the type list.
It's surprising this was working before. fdiv.fast had
the wrong number of parameters. The control flow intrinsic
declaration attributes were not being applied, and
their types were inconsistent. The actual IR use types
did not match the declaration, and were closer to the
types used for the patterns. The brcond lowering
was changing the types, so introduce new nodes for those.
llvm-svn: 298119
Loop unswitching can be extremely harmful for a SIMT target. In case
if hoisted condition is not uniform a SIMT machine will execute both
clones of a loop sequentially. Therefor LoopUnswitch checks if the
condition is non-divergent.
Since DivergenceAnalysis adds an expensive PostDominatorTree analysis
not needed for non-SIMT targets a new option is added to avoid unneded
analysis initialization. The method getAnalysisUsage is called when
TargetTransformInfo is not yet available and we cannot use it here.
For that reason a new field DivergentTarget is added to PassManagerBuilder
to control the behavior and set this field from a target.
Differential Revision: https://reviews.llvm.org/D30796
llvm-svn: 298104
We can mark functions to always inline early in the opt. Since we do not have
call support this early inlining creates opportunities for inter-procedural
optimizations which would not occur otherwise.
Differential Revision: https://reviews.llvm.org/D31016
llvm-svn: 297958
computeKnownBits didn't handle fp_to_fp16 to report
the high bits as 0. ARM maps the generic node to an instruction
that does not modify the high bits of the register, so introduce
a target node where the high bits are known 0.
llvm-svn: 297873
Since v_max_f32_e64/v_max_f16_e64 can be folded if the target
instruction supports the clamp bit, we also need to maintain
modifiers when converting v_mac to v_mad.
This fixes a rendering issue with Dirt Rally because a v_mac
instruction with the clamp bit set was converted to a v_mad
but that bit was lost during the conversion.
Fixes: e184e01dd79 ("AMDGPU: Fold FP clamp as modifier bit")
Patch by Samuel Pitoiset <samuel.pitoiset@gmail.com>
llvm-svn: 297556
This method inverts the Reason field of a scheduling candidate.
It does right comparison between RegCritical and RegExcess, but
everything else is broken. In fact it can prefer less strong reason
such as Weak over RegCritical because Weak > -RegCritical.
The CandReason enum is properly sorted, so just remove artificial
ranking.
Differential Revision: https://reviews.llvm.org/D30557
llvm-svn: 297536
If there is only one successor, and that successor only
has one predecessor the wait can obviously be delayed until
uses or the end of the next block. This avoids code quality
regressions when there are trivial fallthrough blocks inserted
for structurization.
llvm-svn: 297251
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
The problem with the previous commit appears to have been that TableGen was including CodeGen/LowLevelType.h instead of Support/LowLevelTypeImpl.h.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 297241
More module problems. This time it only showed up in the stage 2 compile of
clang-x86_64-linux-selfhost-modules-2 but not the stage 1 compile.
Somehow, this change causes the build to need Attributes.gen before it's been
generated.
llvm-svn: 297188
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 297177
Added code to check constant bus restrictions for VOP formats (only one SGPR value or literal-constant may be used by the instruction).
Note that the same checks are performed by SIInstrInfo::verifyInstruction (used by lowering code).
Added LIT tests.
llvm-svn: 296873
It's not clear to me if this is always better than
doing ds_write2_b64 This adds the constraint of
a 128-bit register input instead of a pair of
64-bit.
llvm-svn: 296512
If during scheduling we have identified that we cannot keep optimistic
occupancy increase critical register pressure limit and try scheduling
of the whole function again. In this case blocks with smaller pressure
will have a chance for better scheduling.
Differential Revision: https://reviews.llvm.org/D30442
llvm-svn: 296506
This change introduces new method to estimate register pressure in
GCNScheduler. Standard RPTracker gives huge error due to the following
reasons:
1. It does not account for live-ins or live-outs if value is not used
in the region itself. That creates a huge error in a very common case
if there are a lot of live-thu registers.
2. It does not properly count subregs.
3. It assumes a register used as an input operand can be reused as an
output. This is not always possible by itself, this is not what RA
will finally do in many cases for various reasons not limited to RA's
inability to do so, and this is not so if the value is actually a
live-thu.
In addition we can now see clear separation between live-in pressure
which we cannot change with the scheduling and tentative pressure
which we can change.
Differential Revision: https://reviews.llvm.org/D30439
llvm-svn: 296491
If two subregs of the same register are defined and we need to revert
schedule changing def order, we will end up with both instructions
having def,read-undef flags because adjustLaneLiveness() will only set
this flag but will not remove it.
Fix this by removing read-undef flags before calling adjustLaneLiveness.
Differential Revision: https://reviews.llvm.org/D30428
llvm-svn: 296484
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 296474
- Verify that runtime metadata is actually valid runtime metadata when assembling, otherwise we could accept the following when assembling, but ocl runtime will reject it:
.amdgpu_runtime_metadata
{ amd.MDVersion: [ 2, 1 ], amd.RandomUnknownKey, amd.IsaInfo: ...
- Make IsaInfo optional, and always emit it.
Differential Revision: https://reviews.llvm.org/D30349
llvm-svn: 296324
This reverts commit r296009. It broke one out of tree target and also
does not account for all partial lines added or removed when calculating
PressureDiff.
llvm-svn: 296182
If a subreg is used in an instruction it counts as a whole superreg
for the purpose of register pressure calculation. This patch corrects
improper register pressure calculation by examining operand's lane mask.
Differential Revision: https://reviews.llvm.org/D29835
llvm-svn: 296009
Implement isLegalToVectorizeLoadChain for AMDGPU to avoid
producing private address spaces accesses that will need to be
split up later. This was doing the wrong thing in the case
where the queried chain was an even number of elements.
A possible <4 x i32> store was being split into
store <2 x i32>
store i32
store i32
rather than
store <2 x i32>
store <2 x i32>
when legal.
llvm-svn: 295933
The manual is unclear on the details of this. It's not
clear to me if denormals are not allowed with clamp,
or if that is only omod. Not allowing denorms for
fp16 or fp64 isn't useful so I also question if that
is really a restriction. Same with whether this is valid
without IEEE mode enabled.
llvm-svn: 295905
This should avoid reporting any stack needs to be allocated in the
case where no stack is truly used. An unused stack slot is still
left around in other cases where there are real stack objects
but no spilling occurs.
llvm-svn: 295891
This allows us to ensure that 0 is never a valid pointer
to a user object, and ensures that the offset is always legal
without needing a register to access it. This comes at the cost
of usable offsets and wasted stack space.
llvm-svn: 295877
Change implementation to use max instead of add.
min/max/med3 do not flush denormals regardless of the mode,
so it is OK to use it whether or not they are enabled.
Also allow using clamp with f16, and use knowledge
of dx10_clamp.
llvm-svn: 295788
Before frame offsets are calculated, try to eliminate the
frame indexes used by SGPR spills. Then we can delete them
after.
I think for now we can be sure that no other instruction
will be re-using the same frame indexes. It should be easy
to notice if this assumption ever breaks since everything
asserts if it tries to use a dead frame index later.
The unused emergency stack slot seems to still be left behind,
so an additional 4 bytes is still wasted.
llvm-svn: 295753