This reverts r321138. It seems there are still underlying issues with
memdep. PR35519 seems to still be present if debug info is enabled. We
end up losing a memcpy. Somehow during store to memset merging, we
insert the memset after the memcpy or fail to update the memdep analysis
to account for the newly inserted memset of a pair.
Reduced test case:
#include <assert.h>
#include <stdio.h>
#include <string>
#include <utility>
#include <vector>
void do_push_back(
std::vector<std::pair<std::string, std::vector<std::string>>>* crls) {
crls->push_back(std::make_pair(std::string(), std::vector<std::string>()));
}
int __attribute__((optnone)) main() {
// Put some data in the vector and then remove it so we take the push_back
// fast path.
std::vector<std::pair<std::string, std::vector<std::string>>> crl_set;
crl_set.push_back({"asdf", {}});
crl_set.pop_back();
printf("first word in vector storage: %p\n", *(void**)crl_set.data());
// Do the push_back which may fail to initialize the data.
do_push_back(&crl_set);
auto* first = &crl_set.back().first;
printf("first word in vector storage (should be zero): %p\n",
*(void**)crl_set.data());
assert(first->empty());
puts("ok");
}
Compile with libc++, enable optimizations, and enable debug info:
$ clang++ -stdlib=libc++ -g -O2 t.cpp -o t.exe -Wl,-rpath=llvm/build/lib
This program will assert with this change.
llvm-svn: 321510
This teaches memcpyopt to make a non-local memdep query when a local query
indicates that the dependency is non-local. This notably allows it to
eliminate many more llvm.memcpy calls in common Rust code, often by 20-30%.
This is r319482 and r319483, along with fixes for PR35519: fix the
optimization that merges stores into memsets to preserve cached memdep
info, and fix memdep's non-local caching strategy to not assume that larger
queries are always more conservative than smaller ones.
Fixes PR28958 and PR35519.
Differential Revision: https://reviews.llvm.org/D40802
llvm-svn: 321138
This caused PR35519.
> [memcpyopt] Teach memcpyopt to optimize across basic blocks
>
> This teaches memcpyopt to make a non-local memdep query when a local query
> indicates that the dependency is non-local. This notably allows it to
> eliminate many more llvm.memcpy calls in common Rust code, often by 20-30%.
>
> Fixes PR28958.
>
> Differential Revision: https://reviews.llvm.org/D38374
>
> [memcpyopt] Commit file missed in r319482.
>
> This change was meant to be included with r319482 but was accidentally
> omitted.
llvm-svn: 319873
Summary:
The aim is to make ModRefInfo checks and changes more intuitive
and less error prone using inline methods that abstract the bit operations.
Ideally ModRefInfo would become an enum class, but that change will require
a wider set of changes into FunctionModRefBehavior.
Reviewers: sanjoy, george.burgess.iv, dberlin, hfinkel
Subscribers: nlopes, llvm-commits
Differential Revision: https://reviews.llvm.org/D40749
llvm-svn: 319821
This teaches memcpyopt to make a non-local memdep query when a local query
indicates that the dependency is non-local. This notably allows it to
eliminate many more llvm.memcpy calls in common Rust code, often by 20-30%.
Fixes PR28958.
Differential Revision: https://reviews.llvm.org/D38374
llvm-svn: 319482
Summary:
Adding part of the changes in D30369 (needed to make progress):
Current patch updates AliasAnalysis and MemoryLocation, but does _not_ clean up MemorySSA.
Original summary from D30369, by dberlin:
Currently, we have instructions which affect memory but have no memory
location. If you call, for example, MemoryLocation::get on a fence,
it asserts. This means things specifically have to avoid that. It
also means we end up with a copy of each API, one taking a memory
location, one not.
This starts to fix that.
We add MemoryLocation::getOrNone as a new call, and reimplement the
old asserting version in terms of it.
We make MemoryLocation optional in the (Instruction, MemoryLocation)
version of getModRefInfo, and kill the old one argument version in
favor of passing None (it had one caller). Now both can handle fences
because you can just use MemoryLocation::getOrNone on an instruction
and it will return a correct answer.
We use all this to clean up part of MemorySSA that had to handle this difference.
Note that literally every actual getModRefInfo interface we have could be made private and replaced with:
getModRefInfo(Instruction, Optional<MemoryLocation>)
and
getModRefInfo(Instruction, Optional<MemoryLocation>, Instruction, Optional<MemoryLocation>)
and delegating to the right ones, if we wanted to.
I have not attempted to do this yet.
Reviewers: dberlin, davide, dblaikie
Subscribers: sanjoy, hfinkel, chandlerc, llvm-commits
Differential Revision: https://reviews.llvm.org/D35441
llvm-svn: 309641
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
The method is called "get *Param* Alignment", and is only used for
return values exactly once, so it should take argument indices, not
attribute indices.
Avoids confusing code like:
IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
Alignment = CS->getParamAlignment(ArgIdx + 1);
Add getRetAlignment to handle the one case in Value.cpp that wants the
return value alignment.
This is a potentially breaking change for out-of-tree backends that do
their own call lowering.
llvm-svn: 301682
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
llvm-svn: 292054
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
Argument evaluation order is one of the edge cases where Clang differs
from GCC, yielding different IR depending on which compiler LLVM was
built with. Make the order deterministic and tune the test to actually
verify the order instead of trying to hide it.
llvm-svn: 286126
Summary:
This fixes pr29105. The reason is that lifetime marks creates new
aliasing pointers the original ones, but before this patch aliases
were not checked in performMemCpyToMemSetOptzn.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23846
llvm-svn: 279769
The need for all these Lookup* functions is just because of calls to
getAnalysis inside methods (i.e. not at the top level) of the
runOnFunction method. They should be straightforward to clean up when
the old PM is gone.
llvm-svn: 272615
An exception could prevent a store from occurring but MemCpyOpt's
callslot optimization would fire anyway, causing the store to occur.
This fixes PR27849.
llvm-svn: 270892
Summary: This change fix the bug in isProfitableToUseMemset() where MaxIntSize shoule be in byte, not bit.
Reviewers: arsenm, joker.eph, mcrosier
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20176
llvm-svn: 269433
Sort of the BB-local equivalent to idiom-recognizer: if we have a basic-block
that really implements a memcpy operation, backends can benefit from seeing
this.
llvm-svn: 269125
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
Summary: This now try to reorder instructions in order to help create the optimizable pattern.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc, joker.eph, majnemer
Differential Revision: http://reviews.llvm.org/D16523
llvm-svn: 263503
This is a fairly straightforward port to the new pass manager with one
exception. It removes a very questionable use of releaseMemory() in
the old pass to invalidate its caches between runs on a function.
I don't think this is really guaranteed to be safe. I've just used the
more direct port to the new PM to address this by nuking the results
object each time the pass runs. While this could cause some minor malloc
traffic increase, I don't expect the compile time performance hit to be
noticable, and it makes the correctness and other aspects of the pass
much easier to reason about. In some cases, it may make things faster by
making the sets and maps smaller with better locality. Indeed, the
measurements collected by Bruno (thanks!!!) show mostly compile time
improvements.
There is sadly very limited testing at this point as there are only two
tests of memdep, and both rely on GVN. I'll be porting GVN next and that
will exercise this heavily though.
Differential Revision: http://reviews.llvm.org/D17962
llvm-svn: 263082
Summary: As per title. This will allow the optimizer to pick up on it.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc, joker.eph, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15923
llvm-svn: 256969
Summary: It turns out that if we don't try to do it at the store location, we can do it before any operation that alias the load, as long as no operation alias the store.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15903
llvm-svn: 256923
Summary:
Most of the tool chain is able to optimize scalar and memcpy like operation effisciently while it isn't that good with aggregates. In order to improve the support of aggregate, we try to change aggregate manipulation into either scalar or memcpy like ones whenever possible without loosing informations.
This is one such opportunity.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15894
llvm-svn: 256868
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.
This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770. This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`. `Function::front()` started to assert, since the function
was empty. Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before. (I added the missing check for
`Function::isDeclaration()`.)
Otherwise, no functionality change intended.
llvm-svn: 250211
Pass MemCpyOpt doesn't check if a store instruction is nontemporal.
As a consequence, adjacent nontemporal stores are always merged into a
memset call.
Example:
;;;
define void @foo(<4 x float>* nocapture %p) {
entry:
store <4 x float> zeroinitializer, <4 x float>* %p, align 16, !nontemporal !0
%p1 = getelementptr inbounds <4 x float>, <4 x float>* %dst, i64 1
store <4 x float> zeroinitializer, <4 x float>* %p1, align 16, !nontemporal !0
ret void
}
!0 = !{i32 1}
;;;
In this example, the two nontemporal stores are combined to a memset of zero
which does not preserve the nontemporal hint. Later on the backend (tested on a
x86-64 corei7) expands that memset call into a sequence of two normal 16-byte
aligned vector stores.
opt -memcpyopt example.ll -S -o - | llc -mcpu=corei7 -o -
Before:
xorps %xmm0, %xmm0
movaps %xmm0, 16(%rdi)
movaps %xmm0, (%rdi)
With this patch, we no longer merge nontemporal stores into calls to memset.
In this example, llc correctly expands the two stores into two movntps:
xorps %xmm0, %xmm0
movntps %xmm0, 16(%rdi)
movntps %xmm0, (%rdi)
In theory, we could extend the usage of !nontemporal metadata to memcpy/memset
calls. However a change like that would only have the effect of forcing the
backend to expand !nontemporal memsets back to sequences of store instructions.
A memset library call would not have exactly the same semantic of a builtin
!nontemporal memset call. So, SelectionDAG will have to conservatively expand
it back to a sequence of !nontemporal stores (effectively undoing the merging).
Differential Revision: http://reviews.llvm.org/D13519
llvm-svn: 249820