Commit Graph

17 Commits

Author SHA1 Message Date
Lang Hames 9eb4939b86 [ORC] Allow JITDylib::getDFSLinkOrder and friends to fail for defunct JITDylibs.
Calls to JITDylib's getDFSLinkOrder and getReverseDFSLinkOrder methods (both
static an non-static versions) are now valid to make on defunct JITDylibs, but
will return an error if any JITDylib in the link order is defunct.

This means that platforms can safely lookup link orders by name in response to
jit-dlopen calls from the ORC runtime, even if the call names a defunct
JITDylib -- the call will just fail with an error.
2022-01-20 17:45:32 +11:00
Lang Hames ade71641dc [ORC] Add Platform::teardownJITDylib method.
This is a counterpart to Platform::setupJITDylib, and is called when JITDylib
instances are removed (via ExecutionSession::removeJITDylib).

Upcoming MachOPlatform patches will use this to clear per-JITDylib data when
JITDylibs are removed.
2022-01-18 16:27:02 +11:00
Lang Hames 118e953b18 Re-apply "[JITLink] Update JITLink to use ExecutorAddr rather... " with fixes.
This re-applies 133f86e954, which was reverted in
c5965a411c while I investigated bot failures.

The original failure contained an arithmetic conversion think-o (on line 419 of
EHFrameSupport.cpp) that could cause failures on 32-bit platforms. The issue
should be fixed in this patch.
2022-01-06 17:22:21 +11:00
Lang Hames c5965a411c Revert "[JITLink] Update JITLink to use ExecutorAddr rather than..."
This reverts commit 133f86e954 while I investigate
the bot failures at https://lab.llvm.org/buildbot#builders/186/builds/3370.
2022-01-06 15:20:21 +11:00
Lang Hames 133f86e954 [JITLink] Update JITLink to use ExecutorAddr rather than JITTargetAddress.
ExecutorAddr is the preferred representation for executor process addresses now.
2022-01-06 13:48:12 +11:00
Lang Hames ae73f3fdd6 [ORC] Add a MaterializationUnit::Interface struct.
MaterializationUnit::Interface holds the values that make up the interface
(for ORC's purposes) of a materialization unit: the symbol flags map and
initializer symbol.

Having a type for this will make functions that build materializer interfaces
more readable and maintainable.
2021-12-08 13:41:15 +11:00
Simon Pilgrim 16729d0f62 [Orc] ELFNixPlatform::setupJITDylib - remove dead return. NFCI.
2 returns, one after the other - reported by coverity
2021-10-14 12:17:40 +01:00
Lang Hames 962a2479b5 Re-apply e50aea58d5, "Major JITLinkMemoryManager refactor". with fixes.
Adds explicit narrowing casts to JITLinkMemoryManager.cpp.

Honors -slab-address option in llvm-jitlink.cpp, which was accidentally
dropped in the refactor.

This effectively reverts commit 6641d29b70.
2021-10-11 21:39:00 -07:00
Lang Hames 6641d29b70 Revert "[JITLink][ORC] Major JITLinkMemoryManager refactor."
This reverts commit e50aea58d5 while I
investigate bot failures.
2021-10-11 19:23:41 -07:00
Lang Hames e50aea58d5 [JITLink][ORC] Major JITLinkMemoryManager refactor.
This commit substantially refactors the JITLinkMemoryManager API to: (1) add
asynchronous versions of key operations, (2) give memory manager implementations
full control over link graph address layout, (3) enable more efficient tracking
of allocated memory, and (4) support "allocation actions" and finalize-lifetime
memory.

Together these changes provide a more usable API, and enable more powerful and
efficient memory manager implementations.

To support these changes the JITLinkMemoryManager::Allocation inner class has
been split into two new classes: InFlightAllocation, and FinalizedAllocation.
The allocate method returns an InFlightAllocation that tracks memory (both
working and executor memory) prior to finalization. The finalize method returns
a FinalizedAllocation object, and the InFlightAllocation is discarded. Breaking
Allocation into InFlightAllocation and FinalizedAllocation allows
InFlightAllocation subclassses to be written more naturally, and FinalizedAlloc
to be implemented and used efficiently (see (3) below).

In addition to the memory manager changes this commit also introduces a new
MemProt type to represent memory protections (MemProt replaces use of
sys::Memory::ProtectionFlags in JITLink), and a new MemDeallocPolicy type that
can be used to indicate when a section should be deallocated (see (4) below).

Plugin/pass writers who were using sys::Memory::ProtectionFlags will have to
switch to MemProt -- this should be straightworward. Clients with out-of-tree
memory managers will need to update their implementations. Clients using
in-tree memory managers should mostly be able to ignore it.

Major features:

(1) More asynchrony:

The allocate and deallocate methods are now asynchronous by default, with
synchronous convenience wrappers supplied. The asynchronous versions allow
clients (including JITLink) to request and deallocate memory without blocking.

(2) Improved control over graph address layout:

Instead of a SegmentRequestMap, JITLinkMemoryManager::allocate now takes a
reference to the LinkGraph to be allocated. The memory manager is responsible
for calculating the memory requirements for the graph, and laying out the graph
(setting working and executor memory addresses) within the allocated memory.
This gives memory managers full control over JIT'd memory layout. For clients
that don't need or want this degree of control the new "BasicLayout" utility can
be used to get a segment-based view of the graph, similar to the one provided by
SegmentRequestMap. Once segment addresses are assigned the BasicLayout::apply
method can be used to automatically lay out the graph.

(3) Efficient tracking of allocated memory.

The FinalizedAlloc type is a wrapper for an ExecutorAddr and requires only
64-bits to store in the controller. The meaning of the address held by the
FinalizedAlloc is left up to the memory manager implementation, but the
FinalizedAlloc type enforces a requirement that deallocate be called on any
non-default values prior to destruction. The deallocate method takes a
vector<FinalizedAlloc>, allowing for bulk deallocation of many allocations in a
single call.

Memory manager implementations will typically store the address of some
allocation metadata in the executor in the FinalizedAlloc, as holding this
metadata in the executor is often cheaper and may allow for clean deallocation
even in failure cases where the connection with the controller is lost.

(4) Support for "allocation actions" and finalize-lifetime memory.

Allocation actions are pairs (finalize_act, deallocate_act) of JITTargetAddress
triples (fn, arg_buffer_addr, arg_buffer_size), that can be attached to a
finalize request. At finalization time, after memory protections have been
applied, each of the "finalize_act" elements will be called in order (skipping
any elements whose fn value is zero) as

((char*(*)(const char *, size_t))fn)((const char *)arg_buffer_addr,
                                     (size_t)arg_buffer_size);

At deallocation time the deallocate elements will be run in reverse order (again
skipping any elements where fn is zero).

The returned char * should be null to indicate success, or a non-null
heap-allocated string error message to indicate failure.

These actions allow finalization and deallocation to be extended to include
operations like registering and deregistering eh-frames, TLS sections,
initializer and deinitializers, and language metadata sections. Previously these
operations required separate callWrapper invocations. Compared to callWrapper
invocations, actions require no extra IPC/RPC, reducing costs and eliminating
a potential source of errors.

Finalize lifetime memory can be used to support finalize actions: Sections with
finalize lifetime should be destroyed by memory managers immediately after
finalization actions have been run. Finalize memory can be used to support
finalize actions (e.g. with extra-metadata, or synthesized finalize actions)
without incurring permanent memory overhead.
2021-10-11 19:12:42 -07:00
luxufan 590326382d [Orc] Support atexit in Orc(JITLink)
There is a bug reported at https://bugs.llvm.org/show_bug.cgi?id=48938

After looking through the glibc, I found the `atexit(f)` is the same as `__cxa_atexit(f, NULL, NULL)`. In orc runtime, we identify different JITDylib by their dso_handle value, so that a NULL dso_handle is invalid. So in this patch, I added a `PlatformJDDSOHandle` to ELFNixRuntimeState, and functions which are registered by atexit will be registered at PlatformJD.

Reviewed By: lhames

Differential Revision: https://reviews.llvm.org/D111413
2021-10-09 12:25:47 +08:00
Lang Hames 21a06254a3 [ORC] Switch from JITTargetAddress to ExecutorAddr for EPC-call APIs.
Part of the ongoing move to ExecutorAddr.
2021-09-27 16:53:09 -07:00
Lang Hames ef391df2b6 [ORC] Rename ExecutorAddress to ExecutorAddr.
Removing the 'ess' suffix improves the ergonomics without sacrificing clarity.
Since this class is likely to be used more frequently in the future it's worth
some short term pain to fix this now.
2021-09-23 20:35:17 -07:00
luxufan ff6069b891 [JITLink] Add initial native TLS support to ELFNix platform
This patch use the same way as the https://reviews.llvm.org/rGfe1fa43f16beac1506a2e73a9f7b3c81179744eb to handle the thread local variable.

It allocates 2 * pointerSize space in GOT to represent the thread key and data address. Instead of using the _tls_get_addr function, I customed a function __orc_rt_elfnix_tls_get_addr to get the address of thread local varible. Currently, this is a wip patch, only one TLS relocation R_X86_64_TLSGD is supported and I need to add the corresponding test cases.

To allocate the TLS  descriptor in GOT, I need to get the edge kind information in PerGraphGOTAndPLTStubBuilder, So I add a `Edge::Kind K` argument in some functions in PerGraphGOTAndPLTStubBuilder.h. If it is not suitable, I can think further to solve this problem.

Differential Revision: https://reviews.llvm.org/D109293
2021-09-13 14:35:49 +08:00
Lang Hames b749ef9e22 [ORC][ORC-RT] Reapply "Introduce ELF/*nix Platform and runtime..." with fixes.
This reapplies e256445bff, which was reverted in 45ac5f5441 due to bot errors
(e.g. https://lab.llvm.org/buildbot/#/builders/112/builds/8599). The issue that
caused the bot failure was fixed in 2e6a4fce35.
2021-08-27 14:41:58 +10:00
Lang Hames 45ac5f5441 Revert "[ORC-RT][ORC] Introduce ELF/*nix Platform and runtime support."
This reverts commit e256445bff.

This commit broke some of the bots (see e.g.
https://lab.llvm.org/buildbot/#/builders/112/builds/8599). Reverting while I
investigate.
2021-08-18 20:42:23 +10:00
Lang Hames e256445bff [ORC-RT][ORC] Introduce ELF/*nix Platform and runtime support.
This change adds support to ORCv2 and the Orc runtime library for static
initializers, C++ static destructors, and exception handler registration for
ELF-based platforms, at present Linux and FreeBSD on x86_64. It is based on the
MachO platform and runtime support introduced in bb5f97e3ad.

Patch by Peter Housel. Thanks very much Peter!

Reviewed By: lhames

Differential Revision: https://reviews.llvm.org/D108081
2021-08-18 15:00:22 +10:00