`llvm-otool -tV foo.o` and `llvm-objdump --macho -d foo.o` would
previously fail on object files containing @TLVPPAGE or @TLVPPAGEOFF relocs.
Move llvm-objdump-specific test from
llvm/test/MC/AArch64/arm64-tls-modifiers-darwin.s to new
llvm/test/tools/llvm-objdump/MachO/disassemble-arm64-tlv-modifers.test
and put test for this fix to that new file.
Fixes PR52356.
Differential Revision: https://reviews.llvm.org/D112843
Summary: Fix the build failure on MSVC by making the `T` and `U` of the function
'T llvm::Optional<T>::getValueOr<llvm::yaml::Hex32>(U &&) const &' the same.
Differential Revision: https://reviews.llvm.org/D111487
This patch fixes some issues introduced in
https://reviews.llvm.org/D108942:
1) Remove the default label to fix the bots that use
-Werror,-Wcovered-switch-default
2) Modify the malformed test to fix the bots that are
built without zlib support
3) Modify some error messages in malformed profiles
Previously, if the basic-blocks delta pass tried to remove a basic block
that was the last basic block in a function that did not have external
or weak linkage, the resulting IR would become invalid. Since removing
the last basic block in a function is effectively identical to removing
the function body itself, we check explicitly for this case and if we
detect it, we run the same logic as in ReduceFunctionBodies.cpp
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D113486
Sometimes if llvm-reduce is interrupted in the middle of a delta pass on
a large file, it can take quite some time for the tool to start actually
doing new work if it is restarted again on the partially-reduced file. A
lot of time ends up being spent testing large chunks when these large
chunks are very unlikely to actually pass the interestingness test. In
cases like this, the tool will complete faster if the starting
granularity is reduced to a finer amount. Thus, we introduce a command
line flag that automatically divides the chunks into smaller subsets a
fixed, user-specified number of times prior to beginning the core loop.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D112651
If profile data is malformed for any kind of reason, we generate
an error that only reports "malformed instrumentation profile data"
without any further information. This patch extends InstrProfError
class to receive an optional error message argument, so that we can
do better error reporting.
Differential Revision: https://reviews.llvm.org/D108942
It is often useful to know which die is the parent of the current die.
This patch adds information about parent offset into the dump:
0x0000000b: DW_TAG_compile_unit
DW_AT_producer ("by_hand")
0x00000014: DW_TAG_base_type (0x0000000b) <<<<<<<<<<<<<<
DW_AT_name ("int")
Now it is easy to see which die is the parent of the current die.
This patch makes that behaviour to be default.
We can make it to be opt-in if neccessary.
This functionality differs from already existed "--show-parents"
in that sence that parent information is shown for all dies and
only link to the immediate parent is shown.
Differential Revision: https://reviews.llvm.org/D113406
Summary:
This patch adds yaml2obj supporting for the auxiliary
file header of XCOFF.
Reviewed By: DiggerLin, jhenderson
Differential Revision: https://reviews.llvm.org/D111487
A new tool that compares TargetLibraryInfo's opinion of the availability
of library function calls against the functions actually exported by a
specified set of libraries. Can be helpful in verifying the correctness
of TLI for a given target, and avoid mishaps such as had to be addressed
in D107509 and 94b4598d.
The tool currently supports ELF object files only, although it's unlikely
to be hard to add support for other formats.
Re-commits 62dd488 with changes to use pre-generated objects, as not all
bots have ld.lld available.
Differential Revision: https://reviews.llvm.org/D111358
A new tool that compares TargetLibraryInfo's opinion of the availability
of library function calls against the functions actually exported by a
specified set of libraries. Can be helpful in verifying the correctness
of TLI for a given target, and avoid mishaps such as had to be addressed
in D107509 and 94b4598d.
The tool currently supports ELF object files only, although it's unlikely
to be hard to add support for other formats.
Differential Revision: https://reviews.llvm.org/D111358
I am planning to upstream MachOObjectFile code to support Darwin
chained fixups. In order to test the new parser features we need a way
to produce correct (and incorrect) chained fixups. Right now the only
tool that can produce them is the Darwin linker. To avoid having to
check in binary files, this patch allows obj2yaml to print a hexdump
of the raw LINKEDIT and DATA segment, which both allows to
bootstrap the parser and enables us to easily create malformed inputs
to test error handling in the parser.
This patch adds two new options to obj2yaml:
-raw-data-segment
-raw-linkedit-segment
Differential Revision: https://reviews.llvm.org/D113234
Replace the description and file names for this argument. As far as I understand
this is a positional argument and I don't believe this changes breaks any existing
interfaces.
Reviewed By: hctim, MaskRay
Differential Revision: https://reviews.llvm.org/D113316
Matching a recent clang change I've made, now 'int[3]' is formatted
without the space between the type and array bound. This commit updates
libDebugInfoDWARF/llvm-dwarfdump to match that formatting.
Previously we assume there're some non-executing sections at the bottom of the text section so that we won't hit the array's bound. But on BOLTed binary, it turned out .bolt section is at the bottom of text section which can be profiled, then it crash llvm-profgen. This change try to fix it.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D113238
Actually we can, for now, remove the explicit "operator" handling
entirely - since clang currently won't try to flag any of these as
rebuildable. That seems like a reasonable state for now, but it could be
narrowed down to only apply to conversion operators, most likely - but
would need more nuance for op> and op>> since they would be incorrectly
flagged as already having their template arguments (due to the trailing
'>').
As seen in https://bugs.llvm.org/show_bug.cgi?id=52213 llvm-objdump
asserts if either the --debug-vars or the --dwarf options are provided
with invalid values. As suggested, this fix adds use of a default value
to these options and errors when given bad input.
Differential Revision: https://reviews.llvm.org/D112183
Two things in this diff:
1) Warn on the invalid range, currently three types of checking, see the detailed message in the code.
2) In some situation, llvm-profgen gives lots of warnings on the truncated stacks which is noisy. This change provides a switch to `--show-detailed-warning` to skip the warnings. Alternatively, we use a summary for those warning and show the percentage of cases with those issues.
Example of warning summary.
```
warning: 0.05%(1120/2428958) cases with issue: Profile context truncated due to missing probe for call instruction.
warning: 0.00%(2/178637) cases with issue: Range does not belong to any functions, likely from external function.
```
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D111902
Notes generated in OpenBSD core files provide additional information
about the kernel state and CPU registers. These notes are described
in core.5, which can be viewed here: https://man.openbsd.org/core.5
Differential Revision: https://reviews.llvm.org/D111966
(Second try. Need to link against CodeGen and MC libs.)
The llvm-reduce tool has been extended to operate on MIR (import, clone and
export). Current limitation is that only a single machine function is
supported. A single reducer pass that operates on machine instructions (while
on SSA-form) has been added. Additional MIR specific reducer passes can be
added later as needed.
Differential Revision: https://reviews.llvm.org/D110527
The llvm-reduce tool has been extended to operate on MIR (import, clone and
export). Current limitation is that only a single machine function is
supported. A single reducer pass that operates on machine instructions (while
on SSA-form) has been added. Additional MIR specific reducer passes can be
added later as needed.
Differential Revision: https://reviews.llvm.org/D110527
Allow filling zero count for all the function ranges even there is no samples hitting that function. Add a switch for this.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D112858
with tests generated by yaml2obj.
Summary: Because yaml2obj supports basic transforming for XCOFF,
some of the binary inputs used in the tests of llvm-readobj
can be replaced with yaml files.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D111699
Like probe-based profile, the total samples is the sum of all its body samples. This patch fix it by a post-processing update for the line-number based profile. Tested it on our internal services, results showed no performance change.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D112672
Previous implementation of populating profile symbol list is wrong, it only included the profiled symbols. Actually it should use all symbols, here this switches to use the symbols from debug info. Also turned the flag off by default.
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D111824
This was checked while counting but not actually when doing the reduction, resulting in crashes.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D112766
Functions in different sections (common in object files - inline
functions, -ffunction-sections, etc) can't overlap, so factor in the
section when diagnosing overlapping address ranges.
This removes a major false-positive when running llvm-dwarfdump on
unlinked code.
Adding support to the CS preinliner to trim cold base profiles. This makes trimming consistent with the inline decision made by the preinliner. Also disable the existing profile merger when preinliner is on unless explicitly specified.
Reviewed By: wenlei, wlei
Differential Revision: https://reviews.llvm.org/D112489
GNU sed offers the `,+4d` to delete the line a next four lines, but BSD
sed doesn't seem to support it (at least in macOS 10.15, but seems to do
in my 11.6 version).
Replace the usage of the extension with the equivalent syntax that works
both in BSD and GNU sed. I don't have a macOS 10.15 to check, but this
works in both my macOS 11.6 and Linux machines.
Differential Revision: https://reviews.llvm.org/D112583
**Context:**
This is a second attempt at introducing signature regeneration to llvm-objcopy. In this diff: https://reviews.llvm.org/D109840, a script was introduced to test
the validity of a code signature. In this diff: https://reviews.llvm.org/D109803 (now reverted), an effort was made to extract the signature generation behavior out of LLD into a common location for use in llvm-objcopy. In this diff: https://reviews.llvm.org/D109972 it was decided that there was no appropriate common location and that a small amount of duplication to bring signature generation to llvm-objcopy would be better. This diff introduces this duplication.
**Summary**
Prior to this change, if a LC_CODE_SIGNATURE load command
was included in the binary passed to llvm-objcopy, the command and
associated section were simply copied and included verbatim in the
new binary. If rest of the binary was modified at all, this results
in an invalid Mach-O file. This change regenerates the signature
rather than copying it.
The code_signature_lc.test test was modified to include the yaml
representation of a small signed MachO executable in order to
effectively test the signature generation.
Reviewed By: alexander-shaposhnikov, #lld-macho
Differential Revision: https://reviews.llvm.org/D111164
This change allows the unsymbolized profile as input. The unsymbolized profile is created by `llvm-profgen` with `--skip-symbolization` and it's after the sample aggregation but before symbolization , so it has much small file size. It can be used for sample merging and trimming, also is useful for debugging or adding test cases. A switch `--unsymbolized-profile=file-patch` is added for this.
Format of unsymbolized profile:
```
[context stack1] # If it's a CS profile
number of entries in RangeCounter
from_1-to_1:count_1
from_2-to_2:count_2
......
from_n-to_n:count_n
number of entries in BranchCounter
src_1->dst_1:count_1
src_2->dst_2:count_2
......
src_n->dst_n:count_n
[context stack2]
......
```
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D111750
Some dwarf loaders in LLVM are hard-coded to only accept 4-byte and 8-byte address sizes. This patch generalizes acceptance into `DWARFContext::isAddressSizeSupported` and provides a common way to generate rejection errors.
The MSP430 target has been given new tests to cover dwarf loading cases that previously failed due to 2-byte addresses.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D111953
We incorrectly use duplication factor for total samples even though we already accumulate samples instead of taking MAX. It causes profile to have bloated total samples for functions with loop unrolled or vectorized. The change fix the issue for total sample, head sample and call target samples.
Differential Revision: https://reviews.llvm.org/D112042
Having non-undef constants in a final llvm-reduce output is nicer than
having undefs.
This splits the existing reduce-operands pass into three, one which does
the same as the current pass of reducing to undef, and two more to
reduce to the constant 1 and the constant 0. Do not reduce to undef if
the operand is a ConstantData, and do not reduce 0s to 1s.
Reducing GEP operands very frequently causes invalid IR (since types may
not match up if we index differently into a struct), so don't touch GEPs.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D111765
Both ports are required for BitTest ops. Update the uops counts + port usage based off the most recent llvm-exegesis captures and what Intel AoM / Agner reports as well.
CMOVGE reads SF and OF. CMOVNS only reads SF. This matches with
other recent changes to use a single flag where possible. It also
matches gcc codegen.
I believe this technically changes whether the conditioanl move happens
on INT_MIN, but for INT_MIN both registers are the same so it doesn't
matter.
Differential Revision: https://reviews.llvm.org/D111826
POSIX does not define the exact output from od tool.
While most implementations use lower case characters in hex output,
the z/OS USS implementation uses upper case characters.
To avoid LIT failures, the FileCheck option to ignore the case must
be used when checking hex bytes.
Reviewed By: abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D111427
Add `-use-dwarf-correlation` switch to allow llvm-profgen to generate AutoFDO profile for binaries built with CSSPGO (pseudo-probe).
Differential Revision: https://reviews.llvm.org/D111776
The first LBR entry can be an external branch, we should ignore the whole trace.
```
7f7448e889e4 0x7f7448e889e4/0x7f7448e88826/P/-/-/1 0x7f7448e8899f/0x7f7448e889d8/P/-/-/4 ...
```
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D111749
Instead of setting operands to undef as the "operands" pass does,
convert the operands to a function argument. This avoids having to
introduce undef values into the IR which have some unpredictability
during optimizations.
For instance,
define void @func() {
entry:
%val = add i32 32, 21
store i32 %val, i32* null
ret void
}
is reduced to
define void @func(i32 %val) {
entry:
%val1 = add i32 32, 21
store i32 %val, i32* null
ret void
}
(note that the instruction %val is renamed to %val1 when printing
the IR to avoid ambiguity; ideally %val1 would be removed by dce or the
instruction reduction pass)
Any call to @func is replaced with a call to the function with the
new signature and filled with undef. This is not ideal for IPA passes,
but those out-of-scope for now.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D111503
Summary: This patch improves the error message context of the
XCOFF interfaces by providing more details.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D110320
We would like to start pushing -mcpu=generic towards enabling the set of
features that improves performance for some CPUs, without hurting any
others. A blend of the performance options hopefully beneficial to all
CPUs. The largest part of that is enabling in-order scheduling using the
Cortex-A55 schedule model. This is similar to the Arm backend change
from eecb353d0e which made -mcpu=generic perform in-order scheduling
using the cortex-a8 schedule model.
The idea is that in-order cpu's require the most help in instruction
scheduling, whereas out-of-order cpus can for the most part out-of-order
schedule around different codegen. Our benchmarking suggests that
hypothesis holds. When running on an in-order core this improved
performance by 3.8% geomean on a set of DSP workloads, 2% geomean on
some other embedded benchmark and between 1% and 1.8% on a set of
singlecore and multicore workloads, all running on a Cortex-A55 cluster.
On an out-of-order cpu the results are a lot more noisy but show flat
performance or an improvement. On the set of DSP and embedded
benchmarks, run on a Cortex-A78 there was a very noisy 1% speed
improvement. Using the most detailed results I could find, SPEC2006 runs
on a Neoverse N1 show a small increase in instruction count (+0.127%),
but a decrease in cycle counts (-0.155%, on average). The instruction
count is very low noise, the cycle count is more noisy with a 0.15%
decrease not being significant. SPEC2k17 shows a small decrease (-0.2%)
in instruction count leading to a -0.296% decrease in cycle count. These
results are within noise margins but tend to show a small improvement in
general.
When specifying an Apple target, clang will set "-target-cpu apple-a7"
on the command line, so should not be affected by this change when
running from clang. This also doesn't enable more runtime unrolling like
-mcpu=cortex-a55 does, only changing the schedule used.
A lot of existing tests have updated. This is a summary of the important
differences:
- Most changes are the same instructions in a different order.
- Sometimes this leads to very minor inefficiencies, such as requiring
an extra mov to move variables into r0/v0 for the return value of a test
function.
- misched-fusion.ll was no longer fusing the pairs of instructions it
should, as per D110561. I've changed the schedule used in the test
for now.
- neon-mla-mls.ll now uses "mul; sub" as opposed to "neg; mla" due to
the different latencies. This seems fine to me.
- Some SVE tests do not always remove movprfx where they did before due
to different register allocation giving different destructive forms.
- The tests argument-blocks-array-of-struct.ll and arm64-windows-calls.ll
produce two LDR where they previously produced an LDP due to
store-pair-suppress kicking in.
- arm64-ldp.ll and arm64-neon-copy.ll are missing pre/postinc on LPD.
- Some tests such as arm64-neon-mul-div.ll and
ragreedy-local-interval-cost.ll have more, less or just different
spilling.
- In aarch64_generated_funcs.ll.generated.expected one part of the
function is no longer outlined. Interestingly if I switch this to use
any other scheduled even less is outlined.
Some of these are expected to happen, such as differences in outlining
or register spilling. There will be places where these result in worse
codegen, places where they are better, with the SPEC instruction counts
suggesting it is not a decrease overall, on average.
Differential Revision: https://reviews.llvm.org/D110830
This patch modifies the testcase to use error substitution so it will pass on all platforms.
Reviewed By: fanbo-meng, muiez
Differential Revision: https://reviews.llvm.org/D111320
For some transformations like hot-cold split or coro split, it can outline its part of function ranges. Since sample loader is the early stage of backend and no split happens at that time, compiler can't recognize those function, so in llvm-profgen we should attribute the sample to the original function. This is already done for the body range samples since we use the symbols from dwarf which is created before the split.
But for branch samples, the call from master function to its outlined function is actually not a call to the original function, we shouldn't add head/callsie samples for it. So instead of dwarf symbol, we use the symbols from symbol table and ignore those functions with special suffixes(like `.cold` ,`.resume`) for accumulating the callsite/head samples.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D110864
In the command guide --prefix and --prefix-strip is used in the form
--prefix=<prefix> however currently it is used in the form --prefix
<prefix>. This change fixes these options to match the command guide.
Differential Revision: https://reviews.llvm.org/D110551
This is to account for the change that made CountersPtr in __profd_
relative which landed in a1532ed275.
That change hasn't updated the raw profile version, and while the
profile layout stayed the same, profiles generated by tip-of-tree
LLVM are incompatible with 13.x tooling.
Differential Revision: https://reviews.llvm.org/D111123
The test llvm\test\tools\llvm-cxxfilt\delimiters.test started failling when run
from cmd.exe on Windows after D110986 which added a unicode character (⦙) to it.
Piping the unicode character in cmd.exe causes it to be converted to a '?'.
That causes the test to fail because the llvm-cxxfilt output becomes Foo?Bar
rather than the expected Foo⦙Bar.
Redirect the echo output to and from a temporary file to get around this
problem.
It's not entirely clear what the root cause is, but two separate downstream
builders are tripping up on this, so we are landing the work around for the
time being.
Differential Revision: https://reviews.llvm.org/D111072
This change adds duplication factor multiplier while accumulating body samples for line-number based profile. The body sample count will be `duplication-factor * count`. Base discriminator and duplication factor is decoded from the raw discriminator, this requires some refactor works.
Differential Revision: https://reviews.llvm.org/D109934
Both ports are required for BitScan ops. Update the uops counts + port usage based off the most recent llvm-exegesis captures (PR36895) and what Intel AoM / Agner reports as well.
D104366 introduced a new llvm-cxxfilt test with non-ASCII characters,
which caused a failure on llvm-clang-x86_64-expensive-checks-win
builder, with a stack trace suggesting issue in a call to isalnum.
The argument to isalnum should be either EOF or a value that is
representable in the type unsigned char. The llvm-cxxfilt does not
perform a cast from char to unsigned char before the call, so the
value might be out of valid range.
Replace the call to isalnum with isAlnum from StringExtras, which takes
a char as the argument. This also makes the check independent of the
current locale.
Differential Revision: https://reviews.llvm.org/D110986
Summary:
for xcoff :
implement the getSymbolFlag and getSymbolType() for option --syms.
llvm-objdump --sym , if the symbol is label, print the containing section for the symbol too.
when using llvm-objdump --sym --symbol--description, print the symbol index and qualname for symbol.
for example:
--symbol-description
00000000000000c0 l .text (csect: (idx: 2) .foov[PR]) (idx: 3) .foov
and without --symbol-description
00000000000000c0 l .text (csect: .foov) .foov
Reviewers: James Henderson,Esme Yi
Differential Revision: https://reviews.llvm.org/D109452
When replacing function calls, skip call instructions where the old
function is not the called function, but e.g. the old function is passed
as an argument.
This fixes a crash due to trying to construct invalid IR for the test
case.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D109759
The ReduceMetadata pass before this patch removed metadata on a per-MDNode (or NamedMDNode) basis. Either all references to an MDNode are kept, or all of them are removed. However, MDNodes are uniqued, meaning that references to MDNodes with the same data become references to the same MDNodes. As a consequence, e.g. tbaa references to the same type will all have the same MDNode reference and hence make it impossible to reduce only keeping metadata on those memory access for which they are interesting.
Moreover, MDNodes can also be referenced by some intrinsics or other MDNodes. These references were not considered for removal leading to the possibility that MDNodes are not actually removed even if selected to be removed by the oracle.
This patch changes ReduceMetadata to reduces based on removable metadata references instead. MDNodes without references implicitly dropped anyway. References by intrinsic calls should be removed by ReduceOperands or ReduceInstructions. References in other MDNodes cannot be removed as it would violate the immutability of MDNodes.
Additionally, ReduceMetadata pass before this patch used `setMetadata(I, NULL)` to remove references, where `I` is the index in the array returned by `getAllMetadata`. However, `setMetadata` expects a MDKind (such as `MD_tbaa`) as first argument. `getAllMetadata` does not return those in consecutive order (otherwise it would not need to be a `std::pair` with `first` representing the MDKind).
Reviewed By: aeubanks, swamulism
Differential Revision: https://reviews.llvm.org/D110534
Cortex-A55 has 2 64bit NEON vector units, meaning a 128bit instruction
requires taking both units (and can only be issued as the first
instruction in a dual issue pair). This patch models that by splitting
the WriteV SchedWrite into two - the WriteVd that reads/writes only
64bit operands, and the WriteVq that read/writes 128bit registers. The
A55 schedule then uses this distinction to model the WriteVq as taking
both resource units, and starting a Schedule Group and WriteVd as taking
one as before.
I believe this is more correct, even if it does not lead to much better
performance.
Differential Revision: https://reviews.llvm.org/D108766
As for now, llvm-objcopy renames only sections that are specified
explicitly in --rename-section, while GNU objcopy keeps names of
relocation sections in sync with their targets. For example:
> readelf -S test.o
...
[ 1] .foo PROGBITS
[ 2] .rela.foo RELA
> objcopy --rename-section .foo=.bar test.o gnu.o
> readelf -S gnu.o
...
[ 1] .bar PROGBITS
[ 2] .rela.bar RELA
> llvm-objcopy --rename-section .foo=.bar test.o llvm.o
> readelf -S llvm.o
...
[ 1] .bar PROGBITS
[ 2] .rela.foo RELA
This patch makes llvm-objcopy to match the behavior of GNU objcopy better.
Differential Revision: https://reviews.llvm.org/D110352
Some tests with binary IDs would fail with error: no profile can be merged.
This is because raw profiles could have unaligned headers when emitting binary
IDs. This means padding should be emitted after binary IDs are emitted to
ensure everything else is aligned. This patch adds padding after each binary ID
to ensure the next binary ID size is 8-byte aligned. This also adds extra
checks to ensure we aren't reading corrupted data when printing binary IDs.
Differential Revision: https://reviews.llvm.org/D110365
* Add a newline before `DYNAMIC RELOCATION RECORDS` (see D101796)
* Add the missing `OFFSET TYPE VALUE` line
* Align columns
Note: llvm-readobj/ELFDumper.cpp `loadDynamicTable` has sophisticated PT_DYNAMIC
code which is unavailable in llvm-objdump.
Reviewed By: jhenderson, Higuoxing
Differential Revision: https://reviews.llvm.org/D110595
On MIPS, functions with exception handling code emits an additional
temporary label at the start of the function (due to UseAssignmentForEHBegin):
_Z8do_catchv: # @_Z8do_catchv
.Ltmp3:
.set .Lfunc_begin0, .Ltmp3
.cfi_startproc
.cfi_personality 128, DW.ref.__gxx_personality_v0
.cfi_lsda 0, .Lexception0
.frame $c11,48,$c17
.mask 0x00000000,0
.fmask 0x00000000,0
.set noreorder
.set nomacro
.set noat
# %bb.0: # %entry
The `[^:]*` regex was terminating the search after .Ltmp<N>: and therefore
not detecting functions with exception handling.
Reviewed By: atanasyan, MaskRay
Differential Revision: https://reviews.llvm.org/D100027
The MSP430 ABI supports build attributes for specifying
the ISA, code model, data model and enum size in ELF object files.
Differential Revision: https://reviews.llvm.org/D107969
Clang will encode names that should be able to be simplified as
"_STNname|<template, args>" (eg: "_STNt1|<int>") - this verification
mode will detect these names, decode them, create the original name
("t1<int>") and the simple name ("t1") - letting the simple name run
through the usual rebuilding logic - then compare the two sources of the
full name - the rebuilt and the _STN encoding.
This helps ensure that -gsimple-template-names is lossless.
When determining the incompleteness of a DIE based on its children, make
sure we propagate it across union types. See test case for an example.
Without this patch we never emit the definition of Container_ivars.
Differential revision: https://reviews.llvm.org/D110443
In order to be consistent with compiler that interprets zero count as unexecuted(cold), this change reports zero-value count for unexecuted part of function code. For the implementation, it leverages the range counter, initializes all the executed function range with the zero-value. After all ranges are merged and converted into disjoint ranges, the remaining zero count will indicates the unexecuted(cold) part of the function.
This change also extends the current `findDisjointRanges` method which now can support adding zero-value range.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D109713
This patch introduces non-CS AutoFDO profile generation into LLVM. The profile is supposed to be well consumed by compiler using `-fprofile-sample-use=[profile]`.
After range and branch counters are extracted from the LBR sample, here we go through each addresses for symbolization, create FunctionSamples and populate its sub fields like TotalSamples, BodySamples and HeadSamples etc. For inlined code, as we need to map back to original code, so we always add body samples to the leaf frame's function sample.
Reviewed By: wenlei, hoy
Differential Revision: https://reviews.llvm.org/D109551
Similar to https://reviews.llvm.org/D109637, there is a whole invalid line of message in perfscript.
```
warning: Invalid address in LBR record at line 14118674: Processed 14138923 events and lost 1 chunks!
warning: Invalid address in LBR record at line 14118676: Check IO/CPU overload!
```
This only happened for LBR only perfscript, hybridperfscript have a check of " 0x" to make sure it's the LBR perf line.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D110424
Testing on a SLM box suggests these can run on either port, but the throughput is 4cy on either (inc MMX versions). Confirmed with Intel AoM / Agner / InstLatX64.
Without preinliner, we need to tune down the cold count cutoff to merge/trim more context to limit profile size for large components. However it doesn't make sense for cold threshold to be higher than hot threshold, so we now change to use hot threshold as merging/trimming cut off instead.
Differential Revision: https://reviews.llvm.org/D110212
For large app, dumping disasm of the whole program can be slow and result in gianant output. Adding a switch to dump specific symbols only.
Reviewed By: wlei
Differential Revision: https://reviews.llvm.org/D110079
Currenlty PseudoProbeInserter is a pass conditioned on a target switch. It works well with a single clang invocation. It doesn't work so well when the backend is called separately (i.e, through the linker or llc), where user has always to pass -pseudo-probe-for-profiling explictly. I'm making the pass a default pass that requires no command line arg to trigger, but will be actually run depending on whether the CU comes with `llvm.pseudo_probe_desc` metadata.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110209
Make the update_llc_test_checks script test independant of llc behavior
by using cat with static files to simulate llc output.
This allows changing llc without breaking the script test case.
The update script is executed in a temporary directory, so the
llc-generated assembly files are copied there. %T is deprecated, but it
allows copying a file with a predictable filename.
Differential Revision: https://reviews.llvm.org/D110143
Previously the script emitted output using plain CHECK directives. This
can result in a test passing even if there are some instructions between
CHECK directives that should have been removed. It also makes debugging
tests that have the output in a different order more difficult since
FileCheck can match with a later line and then complain about the "wrong"
directive not being found.
This will cause quite large diffs when updating existing tests, but I'm not sure we need an opt-in flag here.
Depends on D109765 (pre-commit tests)
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D109767
This should probably be rendered as "std::nullptr_t" but for now clang
uses the unqualified name (which is ambiguous with possible user defined
name in the global namespace), so match that here.
Both ports are required in most cases. Update the uops counts + port usage based off the most recent llvm-exegesis captures (PR36895) and what Intel AoM / Agner / InstLatX64 reports as well.
Noticed while trying to improve fp costs for vectorization via the D103695 helper script.
Move most type tests to a pre-generated assembly file to make it easier
to add more weird cases without having to hand craft more DWARF.
Move the novel array types that aren't reachable via clang-generated
DWARF to a separate file for easy maintenance.
Both ports are required, for reg and mem variants - we can also use the WriteFComX class directly and remove the unnecessary InstRW overrides. Matches what Intel AoM / Agner / InstLatX64 report as well.
The MMX pack/unpck shuffles don't need an override - they have the same behaviour as other shuffles (Port0 only).
The SSE pslldq/psrldq shuffles don't need an override - they have the same behaviour as other shuffles (Port0 only).
The SSE pshufb shuffles use 4uops (+1 load).
Noticed the pslldq/psrldq issue while trying to improve reduction costs via the D103695 helper script, and fixed the others while reviewing. Confirmed with Intel AoM / Agner / InstLatX64.
Turn on `use-context-cost-for-preinliner` to use context-sensitive byte size cost for preinliner decisions by default.
This is a more accurate proxy of inline cost than profile size. We tested on our large workload that it delivers measureable CPU improvement.
Differential Revision: https://reviews.llvm.org/D109893
This check should ensure we don't reproduce the problem fixed by
02df443d28
More accurately, it checks every llvm::Any::TypeId symbol in libLLVM-x.so and
make sure they have weak linkage and are not local to the library, which would
lead to duplicate definition if another weak version of the symbol is defined in
another linked library.
Differential Revision: https://reviews.llvm.org/D109252
Invalid frame addresses exist in call stack samples due to bad unwinding. This could happen to frame-pointer-based unwinding and the callee functions that do not have the frame pointer chain set up. It isn't common when the program is built with the frame pointer omission disabled, but can still happen with third-party static libs built with frame pointer omitted.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D109638
This syncs parts from the x86 implementation to the ARMWinEH
implementation.
Currently, neither of the compilers targeting COFF/arm64 (MSVC, LLVM)
produce such relocations, but LLVM might after a later patch.
Differential Revision: https://reviews.llvm.org/D109650
This is the same as we do on arm64 already for the MSVC style label
symbols, but also handle the way GCC produces it - with all relocations
pointing at the .text section symbol, with various offsets.
Differential Revision: https://reviews.llvm.org/D109649
Summary: Add the SectionIndex field for symbol.
1: a symbol can reference a section by SectionName or SectionIndex.
2: a symbol can reference a section by both SectionName and SectionIndex.
3: if both Section and SectionIndex are specified, but the two values refer
to different sections, an error will be reported.
4: an invalid SectionIndex is allowed.
5: if a symbol references a non-existent section by SectionName, an error will be reported.
Reviewed By: jhenderson, Higuoxing
Differential Revision: https://reviews.llvm.org/D109566
Summary: The patch adds support for yaml2obj customizing the string table.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D107421
The packed variants of the instructions had been modelled as the same as the scalar variants.
Reported during a run of llvm-exegesis on a cheap SLM box and matches what Agner / InstLatX64 report as well.
The re-use of this struct across iterations of the loop was causing
fields (specifically Name) to be incorrectly shared between multiple
sections.
Differential Revision: https://reviews.llvm.org/D108984
D78776 removed is{Call,Branch,UnconditionalBranch} guards in objdump
before calling MCInstrAnalysis::evaluateBranch. This is fine for other
architectures as they gracefully handle evaluateBranch being called on
non-branches. However, the Lanai MCInstrAnalysis implementation didn't
and that change caused it to crash.
This inserts the same guards back into Lanai's evaluateBranch
implementation and adds a smoke test that exercises `llc | objdump` so
this kind of regression is hopefully caught next time.
Reviewed By: jpienaar, MaskRay
Differential Revision: https://reviews.llvm.org/D107593
If the number of directories was 6 (equal to the DEBUG_DIRECTORY
index), patchDebugDirectory() was run even though the debug directory
is actually the 7th entry. Use <= in the comparison to fix that.
This fixes https://llvm.org/PR51243
Differential Revision: https://reviews.llvm.org/D106940
Reviewed by: jhenderson
Allow variable number of directories, as allowed by the
specification. NumberOfRvaAndSize will default to 16 if not specified,
as in the past.
Reviewed by: jhenderson
Differential Revision: https://reviews.llvm.org/D108825
format.
Currently when we add a new section in the profile format and generate a profile
containing the new section, older compiler which reads the new profile will
issue an error. The forward incompatibility can cause unnecessary churn when
extending the profile. This patch removes the incompatibility when adding a new
section for extbinary format.
Differential Revision: https://reviews.llvm.org/D109398
Print relocations interleaved with disassembled instructions for
executables with relocatable sections, e.g. those built with "-Wl,-q".
Differential Revision: https://reviews.llvm.org/D109016
Currently native clusterization simply groups all benchmarks
by the opcode of key instruction, but that is suboptimal in certain cases,
e.g. where we can already tell that the particular instructions
already resolve into different sched classes.
Move inverse_throughput, latency and uops to sub-directories (like we already do for lbr), which require libpfm, so we can relax the lit limits for analysis tests in the x86 root directory.
Differential Revision: https://reviews.llvm.org/D109353
The current IRSimilarityIdentifier does not try to find similarity across blocks, this patch provides a mechanism to compare two branches against one another, to find similarity across basic blocks, rather than just within them.
This adds a step in the similarity identification process that labels all of the basic blocks so that we can identify the relative branching locations. Within an IRSimilarityCandidate we use these relative locations to determine whether if the branching to other relative locations in the same region is the same between branches. If they are, we consider them similar.
We do not consider the relative location of the branch if the target branch is outside of the region. In this case, both branches must exit to a location outside the region, but the exact relative location does not matter.
Reviewers: paquette, yroux
Differential Revision: https://reviews.llvm.org/D106989
The xmm variant have half the throughput (and +1cy latency) of the mmx variants, but are still 1uop.
I still need to do more thorough testing of SLM on test-suite before fixing the obvious bad numbers for WritePMULLD.
But this helps the D103695 helper script get to more accurate numbers for vXi32 multiplies of extended operands (i.e. we can use PMADDWD, PMULLW/PMULHW etc). Matches what Intel AoM / Agner / llvm-exegesis reports.
The xmm variant have half the throughput (and +1cy latency) of the mmx variants, but are still 1uop.
I still need to do more thorough testing of SLM on test-suite before fixing the obvious bad numbers for WritePMULLD.
But this helps the D103695 helper script get to more accurate numbers for vXi32 multiplies of extended operands (i.e. we can use PMADDWD, PMULLW/PMULHW etc). Matches what Intel AoM / Agner / llvm-exegesis reports.
For RMW instructions, the load and store hold the MEC for an extra cycle, but within the same single uop. This is alluded to in the Intel AOM:
"The MEC also owns the MEC RSV, which is responsible for scheduling of all loads and stores. Load and
store instructions go through addresses generation phase in program order to avoid on-the-fly memory
ordering later in the pipeline. Therefore, an unknown address will stall younger memory instructions."
Noticed while trying to get a cheap SLM test box up and running with llvm-exegesis - RMW arithmetic is always 1uop - and matches what Agner / InstLatX64 report as well.
These were all set to the same best case mul i32 values (which seems to be the only version of MUL that SLM actually performs well with).
Noticed while trying to improve multiplication costs for vectorization via the D103695 helper script. Confirmed with Intel AoM / Agner / InstLatX64.
This does add some extra superfluous whitespace (eg: "int *") intended
to make the Simplified Template Names work easier - this makes the
DIE-based names match more exactly the clang-generated names, so it's
easier to identify cases that don't generate matching names.
(arguably we could change clang to skip that whitespace or add some
fuzzy matching to accommodate differences in certain whitespace - but
this seemed easier and fairly low-impact)
On some platform (eg: AIX), diff will complain about newline.
diff: Missing newline at the end of file
.../llvm/test/tools/llvm-profdata/Inputs/cs-sample.proftext.
SLM PBLENDVB is just as bad as BLENDVPD/PS - so model it as such, fixing the rr vs rm uops diff as well. The Intel AoM appears to have a copy+paste typo with PBLENDW, it doesn't match Agner or InstLatX64.
Noticed while investigating some of the weird discrepancies reported by the D103695 helper script (SLM had much better vector shift throughputs than it should).
This reapplies 71d7fed3bc which was
reverted by 3e2bd82f02. This change
includes the fix for breaking the sanitizer bots.
As seen in https://bugs.llvm.org/show_bug.cgi?id=48880 the current
implementation for parsing grouped short options can return unclear
error messages. This change fixes the example given in the ticket in
which a flag is incorrectly given an argument. Also when parsing a
group we now keep reading past the first incorrect option and output
errors for all incorrect options in the group.
Differential Revision: https://reviews.llvm.org/D108770
Adding the compiler support of MD5 CS profile based on pervious context split work D107299. A MD5 CS profile is about 40% smaller than the string-based extbinary profile. As a result, the compilation is 15% faster.
There are a few conversion from real names to md5 names that have been made on the sample loader and context tracker side to get it work.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D108342
This change aims at supporting LBR only sample perf script which is used for regular(Non-CS) profile generation. A LBR perf script includes a batch of LBR sample which starts with a frame pointer and a group of 32 LBR entries is followed. The FROM/TO LBR pair and the range between two consecutive entries (the former entry's TO and the latter entry's FROM) will be used to infer function profile info.
An example of LBR perf script(created by `perf script -F ip,brstack -i perf.data`)
```
40062f 0x40062f/0x4005b0/P/-/-/9 0x400645/0x4005ff/P/-/-/1 0x400637/0x400645/P/-/-/1 ...
4005d7 0x4005d7/0x4005e5/P/-/-/8 0x40062f/0x4005b0/P/-/-/6 0x400645/0x4005ff/P/-/-/1 ...
...
```
For implementation:
- Extended a new child class `LBRPerfReader` for the sample parsing, reused all the functionalities in `extractLBRStack` except for an extension to parsing leading instruction pointer.
- `HybridSample` is reused(just leave the call stack empty) and the parsed samples is still aggregated in `AggregatedSamples`. After that, range samples, branch sample, address samples are computed and recorded.
- Reused `ContextSampleCounterMap` to store the raw profile, since it's no need to aggregation by context, here it just registered one sample counter with a fake context key.
- Unified to use `show-raw-profile` instead of `show-unwinder-output` to dump the intermediate raw profile, see the comments of the format of the raw profile. For CS profile, it remains to output the unwinder output.
Profile generation part will come soon.
Differential Revision: https://reviews.llvm.org/D108153
As seen in https://bugs.llvm.org/show_bug.cgi?id=48880 the current
implementation for parsing grouped short options can return unclear
error messages. This change fixes the example given in the ticket in
which a flag is incorrectly given an argument. Also when parsing a
group we now keep reading past the first incorrect option and output
errors for all incorrect options in the group.
Differential Revision: https://reviews.llvm.org/D108770
Currently context strings contain a lot of duplicated function names and that significantly increase the profile size. This change split the context into a series of {name, offset, discriminator} tuples so function names used in the context can be replaced by the index into the name table and that significantly reduce the size consumed by context.
A follow-up improvement made in the compiler and profiling tools is to avoid reconstructing full context strings which is time- and memory- consuming. Instead a context vector of `StringRef` is adopted to represent the full context in all scenarios. As a result, the previous prevalent profile map which was implemented as a `StringRef` is now engineered as an unordered map keyed by `SampleContext`. `SampleContext` is reshaped to using an `ArrayRef` to represent a full context for CS profile. For non-CS profile, it falls back to use `StringRef` to represent a contextless function name. Both the `ArrayRef` and `StringRef` objects are underpinned by real array and string objects that are stored in producer buffers. For compiler, they are maintained by the sample reader. For llvm-profgen, they are maintained in `ProfiledBinary` and `ProfileGenerator`. Full context strings can be generated only in those cases of debugging and printing.
When it comes to profile format, nothing has changed to the text format, though internally CS context is implemented as a vector. Extbinary format is only changed for CS profile, with an additional `SecCSNameTable` section which stores all full contexts logically in the form of `vector<int>`, which each element as an offset points to `SecNameTable`. All occurrences of contexts elsewhere are redirected to using the offset of `SecCSNameTable`.
Testing
This is no-diff change in terms of code quality and profile content (for text profile).
For our internal large service (aka ads), the profile generation is cut to half, with a 20x smaller string-based extbinary format generated.
The compile time of ads is dropped by 25%.
Differential Revision: https://reviews.llvm.org/D107299
Exegesis is faulty and sometimes when measuring throughput^-1
produces snippets that have loop-carried dependencies,
which must be what caused me to incorrectly measure it originally.
After looking much more carefully, the inverse throughput should match
that of the MULX w/ reg op.
As per llvm-exegesis measurements.
It turns out that SchedWrite WriteIMulH was always assigned to the low half of
the result of a MULX (rather than to the high half).
To avoid confusion, this patch swaps the two MULX writes in the tablegen
definition of MULX32/64. That way, write names better describe what they
actually refer to; this also avoids further complications if in future we decide
to reuse the same MulH writes to also model other scalar integer multiply
instructions. I also had to swap the latency values for the two MULX writes to
make sure that the change is effectively an NFC. In fact, none of the existing
x86 tests were affected by this small refactoring.
This patch also fixes a bug in MCA: a wrong latency value was propagated for
instructions that perform multiple writes to a same register. This last issue
was found by Roman while testing MULX on targets that define a different latency
for the Low/High part of the result.
Differential Revision: https://reviews.llvm.org/D108727
Summary: This patch is trying to add support for llvm-readobj
--needed-libs option under XCOFF.
For XCOFF, the needed libraries can be found from the Import
File ID Name Table of the Loader Section.
Currently, I am using binary inputs in the test since yaml2obj
does not yet support for writing the Loader Section and the
import file table.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D106643
The --set-section-flags option was being ignored when adding a new
section. Take it into account if present.
Fixes https://llvm.org/PR51244
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D106942
We have "-profile-isfs" internal option for text, binary, and
compactbinary format (mostly for debug and test purpose). We
need to set the related flag in FunctionSamples so that ProfileIsFS
is written to the header in extbinary format.
Differential Revision: https://reviews.llvm.org/D108707
This is a follow up diff for BinarySizeContextTracker to track zero size for fully optimized inlinee. When an inlinee is fully optimized away, we won't be able to get its size through symbolizing instructions, hence we will treat the corresponding context size as unknown. However by traversing the inlined probe forest, we know what're original inlinees regardless of optimization. If a context show up in inlined probes, but not during symbolization, we know that it's fully optimized away hence its size is zero instead of unknown. It should provide more accurate size cost estimation for pre-inliner to make better inline decisions in llvm-profgen.
Differential Revision: https://reviews.llvm.org/D108350
Before this patch, WriteIMulH reported a latency value which is correct for the
RR variant of MULX, but not for the RM variant.
This patch fixes the issue by introducing a new WriteIMulHLd, which is meant to
be used only by the RM variant of MULX.
Differential Revision: https://reviews.llvm.org/D108701
No demangling may be a better default in the future.
Add `--demangle` for migration convenience.
Reviewed By: Enna1
Differential Revision: https://reviews.llvm.org/D108100
This implementation allows mca to model the desired behaviour of the s_waitcnt
instruction. This patch also adds the RetireOOO flag to the AMDGPU instructions
within the scheduling model. This flag is only used by mca and allows
instructions to finish out-of-order which helps mca's simulations more closely
model the actual device.
Differential Revision: https://reviews.llvm.org/D104730
This removes the data layout, target triple, source filename, and module
identifier when possible.
Reviewed By: swamulism
Differential Revision: https://reviews.llvm.org/D108568
It appears that the Read operand for stores was being placed on the
first operand (the stored value) not the address base. This adds a
ReadST for the stored value operand, allowing the ReadAdrBase to
correctly act upon the address.
Differential Revision: https://reviews.llvm.org/D108287
verifyDieRanges function checks for the intersected address ranges.
It adds child DieRangeInfo into parent DieRangeInfo to check
whether children have overlapping address ranges. It is safe to not add
DieRangeInfo with empty address range into parent's children list.
This decreases the number of children which should be navigated and as a result
decreases execution time(parents having a lot of children with empty ranges
spend much time navigating them). For this command: "llvm-dwarfdump --verify clang-repl"
execution time decreased from 220 sec till 75 sec.
Differential Revision: https://reviews.llvm.org/D107554
Commit 9f2967bcfe introduced support for
branch coverage including export to the LCOV format.
This commit corrects the LCOV field name for branches from BFH to BRH.
The mistake seems to have slipped in as typo because the correct field
name BRH is used in the comment section at the beginning of the file.
Differential Revision: https://reviews.llvm.org/D108358
Before this patch, instructions MULX32rm and MULX64rm were missing a ReadAdvance
for the implicit read of register EDX/RDX. This patch fixes the issue, and it
also introduces a new SchedWrite for the two variants of MULX. The general idea
behind this last change is to eventually decrease the number of InstRW in the
scheduling models.
This patch also adds a ReadAdvance for the implicit read of EFLAGS in ADCX/ADOX.
Differential Revision: https://reviews.llvm.org/D108372
Support XCOFFDumper relocation reading support
This patch is part of D103696 partition
Reviewed By: daltenty, Helflym
Differential Revision: https://reviews.llvm.org/D104646
Currently, `printHelp` behaves differently for options that:
* do not define `HelpText` (such options _are not printed_), and
* define its `HelpText` as `HelpText<"">` (such options _are printed_).
In practice, both approaches lead to no help text and `printHelp` should
treat them consistently. This patch addresses that by making
`printHelpt` check the length of the help text to be printed.
All affected tests have been updated accordingly. The option definitions
for llvm-cvtres have been updated with a short description or "Not
implemented" for options that are ignored by the tool.
Differential Revision: https://reviews.llvm.org/D107557
This change enables llvm-profgen to use accurate context-sensitive post-optimization function byte size as a cost proxy to drive global preinline decisions.
To do this, BinarySizeContextTracker is introduced to track function byte size under different inline context during disassembling. In preinliner, we can not query context byte size under switch `context-cost-for-preinliner`. The tracker uses a reverse trie to keep size of functions under different context (callee as parent, caller as child), and it can give best/longest possible matching context size for given input context.
The new size cost is off by default. There're a few TODOs that needs to addressed: 1) avoid dangling string from `Offset2LocStackMap`, which will be addressed in split context work; 2) using inlinee's entry probe to make sure we have correct zero size for inlinee that's completely optimized away after inlining. Some tuning is also needed.
Differential Revision: https://reviews.llvm.org/D108180
When option `--symbolize` is true, llvm-xray convert will demangle function
name on default. This patch adds a llvm-xray convert option `no-demangle` to
determine whether to demangle function name when symbolizing function ids from
the input log.
Reviewed By: MaskRay, smeenai
Differential Revision: https://reviews.llvm.org/D108019
The current implementation of printAttributes makes it fiddly to extend
attribute support for new targets.
By refactoring the code so all target specific variables are
initialized in a switch/case statement, it becomes simpler to extend
attribute support for new targets.
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D107968
Fixes an issue with revision 5c6f748c and ad40cb88.
Adds an mcpu argument to the test command, preventing an invalid default
CPU from being used on some platforms.
Similar to D94907 (llvm-nm -D).
The output will match GNU objdump 2.37.
Older versions don't use ` (version)` for undefined symbols.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D108097
Fixes an issue with revision 5c6f748c.
Move the test added in the above commit into the X86 folder, ensuring
that it is only run on targets where its triple is valid.
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=47983
The AsmLexer currently has an issue with lexing line comments in files
with CRLF line endings, in which it reads the carriage return as being
part of the line comment. This causes an error for certain valid comment
layouts; this patch fixes this by excluding the carriage return from the
line comment.
Differential Revision: https://reviews.llvm.org/D90234
Sample profiles are stored in a string map which is basically an unordered map. Printing out profiles by simply walking the string map doesn't enforce an order. I'm sorting the map in the decreasing order of total samples to enable a more stable dump, which is good for comparing two dumps.
Reviewed By: wenlei, wlei
Differential Revision: https://reviews.llvm.org/D108147
This ensures that debug_types references aren't looked for in
debug_info section.
Behavior is still going to be questionable in an unlinked object file -
since cross-cu references could refer to symbols in another .debug_info
(or, in theory, .debug_types) chunk - but if a producer only uses
ref_addr to refer to things within the same .debug_info chunk in an
object file (eg: whole program optimization/LTO - producing two CUs into
a single .debug_info section in an object file - the ref_addrs there
could be resolved relative to that .debug_info chunk, not needing to
consider comdat (DWARFv5 type units or other creatures) chunks of
.debug_info, etc)
Improves maintainability (edit/modify the tests without recompiling) and
error messages (previously the failure would be a gtest failure
mentioning nothing of the input or desired text) and the option to
improve tests with more checks.
(maybe these tests shouldn't all be in separate files - we could
probably have DWARF yaml that contains multiple errors while still being
fairly maintainable - the various invalid offsets (ref_addr, rnglists,
ranges, etc) could probably be all in one test, but for the simple sake
of the migration I just did the mechanical thing here)
The new ELF notes are added in clang-offload-wrapper, and llvm-readobj has to visualize them properly.
Differential Revision: https://reviews.llvm.org/D99552
As for now, llvm-objcopy sorts section headers according to the offsets
of the sections in the input file. That can corrupt section references
in the dynamic symbol table because it is a loadable section and as such
is not updated by the tool. Even though the section references are not
required for loading the binary correctly, they are still handy for a
user who analyzes the file.
While the patch removes global reordering of section headers, it layouts
the sections in the same way as before, i.e. according to their original
offsets. All that helps the output file to resemble the input better.
Note that the patch removes sorting SHT_GROUP sections to the start of
the list, which was introduced in D62620 in order to ensure that they
come before the group members, along with the corresponding test. The
original issue was caused by the sorting of section headers, so dropping
the sorting also resolves the issue.
Differential Revision: https://reviews.llvm.org/D107653
Currently we use a centralized string map(StringMap<FunctionSamples> ProfileMap) to store the profile while populating the sample, which might cause the memory usage bottleneck. I saw in an extreme case, there are thousands of samples whose context stack depth is >= 100. The memory consumption can be greater than 100GB.
As here the context is used for inlining, we can assume we won't have so many of inlinees keeping inlined at the same root function, so this change tried to cap the context stack and merge the samples for peak memory reduction and this is done after recursion compression.
The default value is -1 meaning no depth limit, in the future we can tune to a smaller one.
Reviewed By: hoy, wenlei
Differential Revision: https://reviews.llvm.org/D107800
Clang diagnostics refer to identifier names in quotes.
This patch makes inline remarks conform to the convention.
New behavior:
```
% clang -O2 -Rpass=inline -Rpass-missed=inline -S a.c
a.c:4:25: remark: 'foo' inlined into 'bar' with (cost=-30, threshold=337) at callsite bar:0:25; [-Rpass=inline]
int bar(int a) { return foo(a); }
^
```
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D107791
Fix an edge case missed by https://reviews.llvm.org/D78921. For e.g.,
the Repro debug entry (generated with the /Brepro linker flag) does not
have a debug-directory payload. Do not attempt to patch Debug entries
without a payload.
Differential Revision: https://reviews.llvm.org/D107324
This option is always interpreted strictly as a hexadecimal string,
even if it has no prefix that indicates the number format, hence
the existing call to StringRef::getAsInteger(16, ...).
StringRef::getAsInteger(0, ...) consumes a leading "0x" prefix is
present, but when the radix is specified, the radix shouldn't
be included.
Both MS rc.exe and GNU windres accept the language with that
prefix.
Also allow specifying the codepage to llvm-windres with a different
radix, as GNU windres allows that (but MS rc.exe doesn't).
This fixes https://llvm.org/PR51295.
Differential Revision: https://reviews.llvm.org/D107263
This implements `MCInstrAnalysis::evaluateMemoryOperandAddress()` for
Arm so that the disassembler can print the target address of memory
operands that use PC+immediate addressing.
Differential Revision: https://reviews.llvm.org/D105979
This fixes a bug where implicit uses of EFLAGS were not marked as ReadAdvance in
the RM/MR variants of ADC/SBB (PR51318)
This also fixes the absence of ReadAdvance for the register operand of
RMW arithmetic instructions (PR51322).
Differential Revision: https://reviews.llvm.org/D107367
This change tried to integrate a new count based aggregated type of perf script. The only difference of the format is that an aggregated count is added at the head of the original sample which means the same samples are repeated to the given count times. This is used to reduce the perf script size.
e.g.
```
2
4005dc
400634
400684
7f68c5788793
0x4005c8/0x4005dc/P/-/-/0 ....
```
Implemented by a dedicated PerfReader `AggregatedHybridPerfReader`.
Differential Revision: https://reviews.llvm.org/D107192
This change supports to run without parsing MMap binary loading events instead it always assumes binary is loaded at the preferred address. This is used when we have assured no binary load address changes or we have pre-processed the addresses resolution. Warn if there's interior mmap event but without leading mmap events.
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D107097
Add a comment when there is a shifted value,
add x9, x0, #291, lsl #12 ; =1191936
but not when the immediate value is unshifted,
subs x9, x0, #256 ; =256
when the comment adds nothing additional to the reader.
Differential Revision: https://reviews.llvm.org/D107196
item of StringTable.
Summary: For the string table in XCOFF, the first 4 bytes
contains the length of the string table, so we should
print the string entries from fifth bytes. This patch
also adds tests for llvm-readobj dumping the string
table.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105522
Target-dependent constant folding will fold these down to simple
constants (or at least, expressions that don't involve a GEP). We don't
need heroics to try to optimize the form of the expression before that
happens.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51232 .
Differential Revision: https://reviews.llvm.org/D107116
This fixes support for merging profiles which broke as a consequence
of e50a38840d. The issue was missing
adjustment in merge logic to account for the binary IDs which are
now included in the raw profile just after header.
In addition, this change also:
* Includes the version in module signature that's used for merging
to avoid accidental attempts to merge incompatible profiles.
* Moves the binary IDs size field after version field in the header
as was suggested in the review.
Differential Revision: https://reviews.llvm.org/D107143
This fixes support for merging profiles which broke as a consequence
of e50a38840d. The issue was missing
adjustment in merge logic to account for the binary IDs which are
now included in the raw profile just after header.
In addition, this change also:
* Includes the version in module signature that's used for merging
to avoid accidental attempts to merge incompatible profiles.
* Moves the binary IDs size field after version field in the header
as was suggested in the review.
Differential Revision: https://reviews.llvm.org/D107143
Change `CountersPtr` in `__profd_` to a label difference, which is a link-time
constant. On ELF, when linking a shared object, this requires that `__profc_` is
either private or linkonce/linkonce_odr hidden. On COFF, we need D104564 so that
`.quad a-b` (64-bit label difference) can lower to a 32-bit PC-relative relocation.
```
# ELF: R_X86_64_PC64 (PC-relative)
.quad .L__profc_foo-.L__profd_foo
# Mach-O: a pair of 8-byte X86_64_RELOC_UNSIGNED and X86_64_RELOC_SUBTRACTOR
.quad l___profc_foo-l___profd_foo
# COFF: we actually use IMAGE_REL_AMD64_REL32/IMAGE_REL_ARM64_REL32 so
# the high 32-bit value is zero even if .L__profc_foo < .L__profd_foo
# As compensation, we truncate CountersDelta in the header so that
# __llvm_profile_merge_from_buffer and llvm-profdata reader keep working.
.quad .L__profc_foo-.L__profd_foo
```
(Note: link.exe sorts `.lprfc` before `.lprfd` even if the object writer
has `.lprfd` before `.lprfc`, so we cannot work around by reordering
`.lprfc` and `.lprfd`.)
With this change, a stage 2 (`-DLLVM_TARGETS_TO_BUILD=X86 -DLLVM_BUILD_INSTRUMENTED=IR`)
`ld -pie` linked clang is 1.74% smaller due to fewer R_X86_64_RELATIVE relocations.
```
% readelf -r pie | awk '$3~/R.*/{s[$3]++} END {for (k in s) print k, s[k]}'
R_X86_64_JUMP_SLO 331
R_X86_64_TPOFF64 2
R_X86_64_RELATIVE 476059 # was: 607712
R_X86_64_64 2616
R_X86_64_GLOB_DAT 31
```
The absolute function address (used by llvm-profdata to collect indirect call
targets) can be converted to relative as well, but is not done in this patch.
Differential Revision: https://reviews.llvm.org/D104556
Load/Store unit is used to enforce order of loads and stores if they
alias (controlled by --noalias=false option).
Fixes PR50483 - [MCA] In-order pipeline doesn't track memory
load/store dependencies.
Differential Revision: https://reviews.llvm.org/D103955
When checking if two prefixes can be merged for a function,
update_llc_test_checks.py removed IR comments before comparing
llc outputs of different RUN lines.
This means, if one RUN line emited lines starting with ';' and another
RUN line emited the same lines except the ones starting with ';', both
RUNs would be merged (if they share a prefix).
However, CHECK-NEXT lines check the comments, otherwise they fail, so
the script should not merge RUNs if they contain different comments.
Differential Revision: https://reviews.llvm.org/D101312
When running this test on an aarch64 machine, it fails:
```
/usr/bin/ld.gold: error: .../test/tools/gold/X86/Output/comdat-nodeduplicate.ll.tmp/ab.lto.o: incompatible target
```
Specify the elf_x86_64 emulation as all of the other gold plugin tests
do.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D107020
The LC_SUB_FRAMEWORK, LC_SUB_UMBRELLA, LC_SUB_CLIENT, and LC_SUB_LIBRARY
are used to indicate related libraries, binaries or framework names.
Their only payload is the string with the name of the object. Adding
those commands to the list of ignored/skipped load commands will avoid
an error that stop the process of copying/stripping and will copy their
contents verbatim.
Additionally, in order to have a test for this case, `yaml2obj` now
allows those four commands to contain a `Content`.
Differential Revision: https://reviews.llvm.org/D106412
Apparently, the features were getting mixed up, so we'd try to
disassemble in ARM mode. Fix sub-architecture detection to compute the
correct triple if we're detecting it automatically, so the user doesn't
need to pass --triple=thumb etc.
It's possible we should be somehow tying the "+thumb-mode" target
feature more directly to Tag_CPU_arch_profile? But this seems to work
reasonably well, anyway.
While I'm here, fix up the other llvm-objdump tests that were explicitly
specifying an ARM triple; that shouldn't be necessary.
Differential Revision: https://reviews.llvm.org/D106912
On AIX, the linker needs to check whether a given lto_module_t contains
any constructor/destructor functions, in order to implement the behavior
of the -bcdtors:all flag. See
https://www.ibm.com/docs/en/aix/7.2?topic=l-ld-command for the flag's
documentation.
In llvm IR, constructor (destructor) functions are added to a special
global array @llvm.global_ctors (@llvm.global_dtors).
However, because these two symbols are artificial, they are not visited
during the symbol traversal (using the
lto_module_get_[num_symbols|symbol_name|symbol_attribute] API).
This patch adds a new function to the libLTO interface that checks the
presence of one or both of these two symbols.
Reviewed By: steven_wu
Differential Revision: https://reviews.llvm.org/D106887
list for attributes that don't have the loclist class.
Summary: The overflow error occurs when we try to dump
location list for those attributes that do not have the
loclist class, like DW_AT_count and DW_AT_byte_size.
After re-reviewed the entire list, I sorted those
attributes into two parts, one for dumping location list
and one for dumping the location expression.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D105613
See [GRP_COMDAT group with STB_LOCAL signature](https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc)
objcopy PR: https://sourceware.org/bugzilla/show_bug.cgi?id=27931
GRP_COMDAT deduplication is purely based on the signature symbol name in
ld.lld/GNU ld/gold. The local/global status is not part of the equation.
If the signature symbol is localized by --localize-hidden or
--keep-global-symbol, the intention is likely to make the group fully
localized. Drop GRP_COMDAT to suppress deduplication.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D106782
The current implementation of displaying .stack_size information
presumes that each entry represents a single function but this is not
always the case. For example with the use of ICF multiple functions can
be represented with the same code, meaning that the address found in a
.stack_size entry corresponds to multiple function symbols.
This change allows multiple function names to be displayed when
appropriate.
Differential Revision: https://reviews.llvm.org/D105884
This matches what MS rc.exe allows in practice. I'm not aware of
any legal syntax case that are broken by allowing dashes as part
of what the tokenizer considers an Identifier - but I'm not
very well versed in the RC syntax either, can @amccarth think of
any case that would be broken by this?
This fixes downstream bug
https://github.com/msys2/MINGW-packages/issues/9180.
Additionally, rc.exe allows such resource name strings to be surrounded
by quotes, ending up with e.g.
Resource name (string): "QUOTEDNAME"
(i.e., the quotes end up as part of the string), which llvm-rc doesn't
support yet either. (I'm not aware of such cases in the wild though,
but resource string names with dashes do exist.)
This also allows including files with unquoted paths, with filenames
containing dashes (which fixes
https://github.com/msys2/MINGW-packages/issues/9130, which has been
worked around differently so far).
Differential Revision: https://reviews.llvm.org/D106598
Most modern tools only accept two-dash long options. Remove one-dash
long options which are not recognized by GNU style `getopt_long`.
This ensures long options cannot collide with grouped short options.
Note: llvm-symbolizer has `-demangle={true,false}` for pprof compatibility
(for a while). They are kept.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D106377
We previously had issues identifying macros not registered with a lowercase name.
Reviewed By: mstorsjo, thakis
Differential Revision: https://reviews.llvm.org/D106453
Noticed while trying to clean up the shift costs model for SSE4 targets using the script in D10369 - SLM double-pumps all the 128-bit vector conversion ops and only use FP0 pipe - numbers taken from Intel AOM + Agner.
ML64.EXE applies implicit RIP-relative addressing only to memory references that include a named-variable reference.
Reviewed By: mstorsjo
Differential Revision: https://reviews.llvm.org/D105372
Add support for all built-in text macros supported by ML64:
@Date, @Time, @FileName, @FileCur, and @CurSeg.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D104965
Support @Version and @Line as built-in symbols. For now, resolves @Version to 1427 (the same as for the VS 2019 release of ML.EXE).
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D104964