Integer variants are implemented as atomicrmw or cmpxchg instructions.
Atomic add for floating point (__nvvm_atom_add_gen_f()) is implemented
as a call to an overloaded @llvm.nvvm.atomic.load.add.f32.* LVVM
intrinsic.
Differential Revision: http://reviews.llvm.org/D10666
llvm-svn: 240669
The Microsoft-extension _MoveToCoprocessor and _MoveToCoprocessor2
builtins take the register value to be moved as the first argument,
but the corresponding mcr and mcr2 LLVM intrinsics expect that value
to be the third argument. Handle this as a special case, while still
leaving those intrinsics as generic MSBuiltins. I considered the
alternative of handling these in EmitARMBuiltinExpr, but that does
not work well for the follow-up change that I'm going to make to improve
the error handling for PR22560 -- we need the GetBuiltinType() checks
for ICEArguments, and the ARM version of that code is only used for
Neon intrinsics where the last argument is special and not
checked in the normal way.
llvm-svn: 240462
As specified in the SysV AVX512 ABI drafts. It follows the same scheme
as AVX2:
Arguments of type __m512 are split into eight eightbyte chunks.
The least significant one belongs to class SSE and all the others
to class SSEUP.
This also means we change the OpenMP SIMD default alignment on AVX512.
Based on r240337.
Differential Revision: http://reviews.llvm.org/D9894
llvm-svn: 240338
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
llvm-svn: 240131
Base type of attribute((mode)) can actually be a vector type.
The patch is to distinguish between base type and base element type.
This fixes http://llvm.org/PR17453.
Differential Revision: http://reviews.llvm.org/D10058
llvm-svn: 240125
This flag controls whether a given sanitizer traps upon detecting
an error. It currently only supports UBSan. The existing flag
-fsanitize-undefined-trap-on-error has been made an alias of
-fsanitize-trap=undefined.
This change also cleans up some awkward behavior around the combination
of -fsanitize-trap=undefined and -fsanitize=undefined. Previously we
would reject command lines containing the combination of these two flags,
as -fsanitize=vptr is not compatible with trapping. This required the
creation of -fsanitize=undefined-trap, which excluded -fsanitize=vptr
(and -fsanitize=function, but this seems like an oversight).
Now, -fsanitize=undefined is an alias for -fsanitize=undefined-trap,
and if -fsanitize-trap=undefined is specified, we treat -fsanitize=vptr
as an "unsupported" flag, which means that we error out if the flag is
specified explicitly, but implicitly disable it if the flag was implied
by -fsanitize=undefined.
Differential Revision: http://reviews.llvm.org/D10464
llvm-svn: 240105
This patch adds the -fsanitize=safe-stack command line argument for clang,
which enables the Safe Stack protection (see http://reviews.llvm.org/D6094
for the detailed description of the Safe Stack).
This patch is our implementation of the safe stack on top of Clang. The
patches make the following changes:
- Add -fsanitize=safe-stack and -fno-sanitize=safe-stack options to clang
to control safe stack usage (the safe stack is disabled by default).
- Add __attribute__((no_sanitize("safe-stack"))) attribute to clang that can be
used to disable the safe stack for individual functions even when enabled
globally.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6095
llvm-svn: 239762
in section 10.1, __arm_{w,r}sr{,p,64}.
This includes arm_acle.h definitions with builtins and codegen to support
these, the intrinsics are implemented by generating read/write_register calls
which get appropriately lowered in the backend based on the register string
provided. SemaChecking is also implemented to fault invalid parameters.
Differential Revision: http://reviews.llvm.org/D9697
llvm-svn: 239737
Instead, just EvaluateAsInt().
Follow-up to r239549: rsmith points out that isICE() is expensive;
seems like it's not the right concept anyway, as it fails on
`static const' in C, and will actually trigger the assert below on:
test/Sema/inline-asm-validate-x86.c
llvm-svn: 239651
Summary:
In addition to easier syntax, IRBuilder makes sure to set correct
debug locations for newly added instructions (bitcast and
llvm.lifetime itself). This restores the original behavior, which
was modified by r234581 (reapplied as r235553).
Extend one of the tests to check for debug locations.
Test Plan: regression test suite
Reviewers: aadg, dblaikie
Subscribers: cfe-commits, majnemer
Differential Revision: http://reviews.llvm.org/D10418
llvm-svn: 239643
Right now we're ignoring the fpmath attribute since there's no
backend support for a feature like this and to do so would require
checking the validity of the strings and doing general subtarget
feature parsing of valid and invalid features with the target
attribute feature.
llvm-svn: 239582
Modeled after the gcc attribute of the same name, this feature
allows source level annotations to correspond to backend code
generation. In llvm particular parlance, this allows the adding
of subtarget features and changing the cpu for a particular function
based on source level hints.
This has been added into the existing support for function level
attributes without particular verification for any target outside
of whether or not the backend will support the features/cpu given
(similar to section, etc).
llvm-svn: 239579
For inline assembly immediate constraints, we currently always use
EmitScalarExpr, instead of directly emitting the constant. When the
overflow sanitizer is enabled, this generates overflow intrinsics
instead of constants.
Instead, emit a constant for constraints that either require an
immediate (e.g. 'I' on X86), or only accepts constants (immediate
or symbolic; i.e., don't accept registers or memory).
Fixes PR19763.
Differential Revision: http://reviews.llvm.org/D10255
llvm-svn: 239549
This patch corresponds to review:
http://reviews.llvm.org/D10095
This is for just two instructions and related builtins:
vbpermq
vgbbd
llvm-svn: 239506
CodeGenOptions and onto the PassManagerBuilder. This enables gating
the new EliminateAvailableExternally module pass on whether we are
preparing for LTO.
If we are preparing for LTO (e.g. a -flto -c compile), the new pass is not
included as we want to preserve available externally functions for possible
link time inlining.
llvm-svn: 239481
Based on previous discussion on the mailing list, clang currently lacks support
for C99 partial re-initialization behavior:
Reference: http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-April/029188.html
Reference: http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_253.htm
This patch attempts to fix this problem.
Given the following code snippet,
struct P1 { char x[6]; };
struct LP1 { struct P1 p1; };
struct LP1 l = { .p1 = { "foo" }, .p1.x[2] = 'x' };
// this example is adapted from the example for "struct fred x[]" in DR-253;
// currently clang produces in l: { "\0\0x" },
// whereas gcc 4.8 produces { "fox" };
// with this fix, clang will also produce: { "fox" };
Differential Review: http://reviews.llvm.org/D5789
llvm-svn: 239446
This commit adds back the code that seems to have been dropped unintentionally
in r176985.
rdar://problem/13752163
Differential Revision: http://reviews.llvm.org/D10100
llvm-svn: 239426
The parameter types and return type do not need to be volatile just
because the pointer type's pointee type is volatile qualified. This is
an unnecessary pessimization.
llvm-svn: 238892
We catch most of the various other __fp16 implicit conversions to
float, but not this one:
__fp16 a;
int i;
...
a += i;
For which we used to generate something 'fun' like:
%conv = sitofp i32 %i to float
%1 = tail call i16 @llvm.convert.to.fp16.f32(float %conv)
%add = add i16 %0, %1
Instead, when we have an __fp16 LHS and an integer RHS, we should
use float as the result type.
While there, add a bunch of missing tests for mixed
__fp16/integer expressions.
llvm-svn: 238625
Folding IntToPtr or PtrToInt into Loads, due to r238452,
perturbs the mips-varargs test-case.
Patch by Philip Pfaffe!
Differential Revision: http://reviews.llvm.org/D9153
llvm-svn: 238455
Re-land the change r238200, but with modifications in the tests that should
prevent new failures in some environments as reported with the original
change on the mailing list.
llvm-svn: 238253
Note: __declspec is also temporarily enabled when compiling for a CUDA target because there are implementation details relying on __declspec(property) support currently. When those details change, __declspec should be disabled for CUDA targets.
llvm-svn: 238238
On MIPS unsigned int type should not be zero extended but sign-extended.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D9198
llvm-svn: 238200
in POWER8.
These are the Clang-related changes for http://reviews.llvm.org/D9081
vadduqm
vaddeuqm
vaddcuq
vaddecuq
vsubuqm
vsubeuqm
vsubcuq
vsubecuq
All builtins are added in altivec.h, and guarded with the POWER8_VECTOR and
powerpc64 macros.
http://reviews.llvm.org/D9903
llvm-svn: 238145
This patch adds support for the following new instructions in the
Power ISA 2.07:
vpksdss
vpksdus
vpkudus
vpkudum
vupkhsw
vupklsw
These instructions are available through the vec_packs, vec_packsu,
vec_unpackh, and vec_unpackl built-in interfaces. These are
lane-sensitive instructions, so the built-ins have different
implementations for big- and little-endian, and the instructions must
be marked as killing the vector swap optimization for now.
The first three instructions perform saturating pack operations. The
fourth performs a modulo pack operation, which means it can be
represented with a vector shuffle, and conversely the appropriate
vector shuffles may cause this instruction to be generated. The other
instructions are only generated via built-in support for now.
I noticed during patch preparation that the macro __VSX__ was not
previously predefined when the power8-vector or direct-move features
are requested. This is an error, and I've corrected that here as
well.
Appropriate tests have been added.
There is a companion patch to llvm for the rest of this support.
llvm-svn: 237500
Summary:
r235215 enables support in LLVM for legalizing f16 type in the IR. AArch64
already had support for this. r235215 and some backend patches brought support
for ARM, X86, X86-64, Mips and Mips64.
This change exposes the LangOption 'NativeHalfType' in the command line, so the
backend legalization can be used if desired. NativeHalfType is enabled for
OpenCL (current behavior) or if '-fnative-half-type' is set.
Reviewers: olista01, steven_wu, ab
Subscribers: cfe-commits, srhines, aemerson
Differential Revision: http://reviews.llvm.org/D9781
llvm-svn: 237406
Previously we were setting LangOptions::GNUInline (which controls whether we
use traditional GNU inline semantics) if the language did not have the C99
feature flag set. The trouble with this is that C++ family languages also
do not have that flag set, so we ended up setting this flag in C++ modes
(and working around it in a few places downstream by also checking CPlusPlus).
The fix is to check whether the C89 flag is set for the target language,
rather than whether the C99 flag is cleared. This also lets us remove most
CPlusPlus checks. We continue to test CPlusPlus when deciding whether to
pre-define the __GNUC_GNU_INLINE__ macro for consistency with GCC.
There is a change in semantics in two other places
where we weren't checking both CPlusPlus and GNUInline
(FunctionDecl::doesDeclarationForceExternallyVisibleDefinition and
FunctionDecl::isInlineDefinitionExternallyVisible), but this change seems to
put us back into line with GCC's semantics (test case: test/CodeGen/inline.c).
While at it, forbid -fgnu89-inline in C++ modes, as GCC doesn't support it,
it didn't have any effect before, and supporting it just makes things more
complicated.
Differential Revision: http://reviews.llvm.org/D9333
llvm-svn: 237299
GetOutputStream() owns the stream it returns pointer to and the
pointer should never be freed by us. When we fail to load and exit
early, unique_ptr still holds the pointer and frees it which leads to
compiler crash when CompilerInstance attempts to free it again.
Added regression test for failed bitcode linking.
Differential Revision: http://reviews.llvm.org/D9625
llvm-svn: 237159
Fix for codegen of static variables declared inside of captured statements. Captured statements are actually a transparent DeclContexts, so we have to skip them when trying to get a mangled name for statics.
Differential Revision: http://reviews.llvm.org/D9522
llvm-svn: 236701
This adds low-level builtins to allow access to all of the z13 vector
instructions. Note that instructions whose semantics can be described
by standard C (including clang extensions) do not get any builtins.
For each instructions whose semantics *cannot* (fully) be described, we
define a builtin named __builtin_s390_<insn> that directly maps to this
instruction. These are intended to be compatible with GCC.
For instructions that also set the condition code, the builtin will take
an extra argument of type "int *" at the end. The integer pointed to by
this argument will be set to the post-instruction CC value.
For many instructions, the low-level builtin is mapped to the corresponding
LLVM IR intrinsic. However, a number of instructions can be represented
in standard LLVM IR without requiring use of a target intrinsic.
Some instructions require immediate integer operands within a certain
range. Those are verified at the Sema level.
Based on a patch by Richard Sandiford.
llvm-svn: 236532
This patch adds support for the z13 architecture type. For compatibility
with GCC, a pair of options -mvx / -mno-vx can be used to selectively
enable/disable use of the vector facility.
When the vector facility is present, we default to the new vector ABI.
This is characterized by two major differences:
- Vector types are passed/returned in vector registers
(except for unnamed arguments of a variable-argument list function).
- Vector types are at most 8-byte aligned.
The reason for the choice of 8-byte vector alignment is that the hardware
is able to efficiently load vectors at 8-byte alignment, and the ABI only
guarantees 8-byte alignment of the stack pointer, so requiring any higher
alignment for vectors would require dynamic stack re-alignment code.
However, for compatibility with old code that may use vector types, when
*not* using the vector facility, the old alignment rules (vector types
are naturally aligned) remain in use.
These alignment rules are not only implemented at the C language level,
but also at the LLVM IR level. This is done by selecting a different
DataLayout string depending on whether the vector ABI is in effect or not.
Based on a patch by Richard Sandiford.
llvm-svn: 236531
Cyclone actually supports all the goodies you'd expect to come with an AArch64
CPU, so it doesn't need its own clause. Also we should probably be testing
these clauses.
llvm-svn: 236349
by erasing the soft-float target feature if the rest of the front
end added it because of defaults or the soft float option.
Add some testing for some of the targets that implement this hack.
llvm-svn: 236179
LLVM r236120 renamed debug info IR constructs to use a `DI` prefix, now
that the `DIDescriptor` hierarchy has been gone for about a week. This
commit was generated using the rename-md-di-nodes.sh upgrade script
attached to PR23080, followed by running clang-format-diff.py on the
`lib/` portion of the patch.
llvm-svn: 236121
This is just the clang-side of 32-bit SEH. LLVM still needs work, and it
will determinstically fail to compile until it's feature complete.
On x86, all outlined handlers have no parameters, but they do implicitly
take the EBP value passed in and use it to address locals of the parent
frame. We model this with llvm.frameaddress(1).
This works (mostly), but __finally block inlining can break it. For now,
we apply the 'noinline' attribute. If we really want to inline __finally
blocks on 32-bit x86, we should teach the inliner how to untangle
frameescape and framerecover.
Promote the error diagnostic from codegen to sema. It now rejects SEH on
non-Windows platforms. LLVM doesn't implement SEH on non-x86 Windows
platforms, but there's nothing preventing it.
llvm-svn: 236052
When creating a global variable with a type of a struct with bitfields, we must
forcibly set the alignment of the global from the RecordDecl. We must do this so
that the proper bitfield alignment makes its way down to LLVM, since clang will
mangle the bitfields into one large type.
llvm-svn: 235976
This makes sure that the front end is specific about what they're expecting
the backend to produce. Update a FIXME with the idea that the target-features
could be more precise using backend knowledge.
llvm-svn: 235936
In r235553, Clang started emitting lifetime markers more often. This
caused false negative in MSan, because MSan only poisons all allocas
once at function entry. Eventually, MSan should poison allocas at
lifetime start and probably also lifetime end, but until then, let's not
emit markers that aren't going to be useful.
llvm-svn: 235613
Summary:
Make sure signed overflow in "x--" is checked with
llvm.ssub.with.overflow intrinsic and is reported as:
"-2147483648 - 1 cannot be represented in type 'int'"
instead of:
"-2147483648 + -1 cannot be represented in type 'int'"
, like we do for unsigned overflow.
Test Plan: clang + compiler-rt regression test suite
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8236
llvm-svn: 235568
This reverts commit r234700. It turns out that the lifetime markers
were not the cause of Chromium failing but a bug which was uncovered by
optimizations exposed by the markers.
llvm-svn: 235553
Code in CodeGenModule::GetOrCreateLLVMGlobal that sets up GlobalValue
object for LLVM external symbols has this comment:
// FIXME: This code is overly simple and should be merged with other global
// handling.
One part does seems to be "overly simple" currently is that this code
never sets any alignment info on the GlobalValue, so that the emitted
IR does not have any align attribute on external globals. This can
lead to unnecessarily inefficient code generation.
This patch adds a GV->setAlignment call to set alignment info.
llvm-svn: 235396
SystemZ prefers to align all global variables to two bytes, which is
implemented by setting the TargetInfo member MinGlobalAlign.
However, for compatibility with existing compilers this should *not*
change the ABI alignment value as retrieved via __alignof__, which
it currently does.
This patch fixes the issue by having ASTContext::getDeclAlign ignore
the MinGlobalAlign setting in the ForAlignof case.
Since SystemZ is the only platform setting MinGlobalAlign, this should
cause no change for any other target.
llvm-svn: 235395
Something like { void*, void * } would be passed to a function as a [2 x i64], but returned as an i128. This patch unifies the 2 behaviours so that we also return it as a [2 x i64].
This is better for the quality of the IR, and the size of the final LLVM binary as we tend to want to insert/extract values from these types and do so with the insert/extract instructions is less IR than shifting, truncating, and or'ing values.
Reviewed by Tim Northover.
llvm-svn: 235231
Things can't both be in comdats and have common linkage, so never give things
in comdats common linkage. Common linkage is only used in .c files, and the
only thing that can trigger a comdat in c is selectany from what I can tell.
Fixes PR23243.
Also address an over-the-shoulder review comment from rnk by moving the
hasAttr<SelectAnyAttr>() in Decl.cpp around a bit. It only makes a minor
difference for selectany on global variables, so it goes well with the rest of
this patch.
http://reviews.llvm.org/D9042
llvm-svn: 235053
This patch generates a warning for invalid combination of '-mnan' and
'-march' options, it properly sets NaN encoding for a given '-march',
and it passes a proper NaN encoding to the assembler.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D8170
llvm-svn: 234882