The catch object parameter to llvm.eh.begincatch is optional, and can be
null. We can save some ourselves the stack space, copy ctor, and dtor
calls if we pass null.
llvm-svn: 234264
Utilizing IMAGEREL relocations for synthetic IR constructs isn't
valuable, just clutter. While we are here, simplify HandlerType names
by making the numeric value for the 'adjective' part of the mangled name
instead of appending '.const', etc. The old scheme made for very long
global names and leads to wordy things like '.std_bad_alloc'
llvm-svn: 233503
The HandlerMap describes, to the runtime, what sort of catches surround
the try. In principle, this structure has to be emitted by the backend
because only it knows the layout of the stack (the runtime needs to know
where on the stack the destination of a copy lives, etc.) but there is
some C++ specific information that the backend can't reason about.
Stick this information in special LLVM globals with the relevant
"const", "volatile", "reference" info mangled into the name.
llvm-svn: 232538
Qualifiers are located next to the TypeDescriptor in order to properly
ensure that a pointer type can only be caught by a more qualified catch
handler. This means that a catch handler of type 'const int *' requires
an RTTI object for 'int *'. We got this correct for 'throw' but not for
'catch'.
N.B. We don't currently have the means to store the qualifiers because
LLVM's EH strategy is tailored to the Itanium scheme. The Itanium ABI
stores qualifiers inside the type descriptor in such a way that the
manner of qualification is stored in addition to the pointee type's
descriptor. Perhaps the best way of modeling this for the MS ABI is
using an aggregate type to bundle the qualifiers with the descriptor?
This is tricky because we want to make it clear to the optimization
passes which catch handlers invalidate other handlers.
My current thoughts on a design for this is along the lines of:
{ { TypeDescriptor* TD, i32 QualifierFlags }, i32 MiscFlags }
The idea is that the inner most aggregate is all that is needed to
communicate that one catch handler might supercede another. The
'MiscFlags' field would be used to hold the bitpattern for the notion
that the 'catch' handler does not need to invoke a copy-constructor
because we are catching by reference.
llvm-svn: 232318
Throwing a C++ exception, under the MS ABI, is implemented using three
components:
- ThrowInfo structure which contains information like CV qualifiers,
what destructor to call and a pointer to the CatchableTypeArray.
- In a significant departure from the Itanium ABI, copying by-value
occurs in the runtime and not at the catch site. This means we need
to enumerate all possible types that this exception could be caught as
and encode the necessary information to convert from the exception
object's type to the catch handler's type. This includes complicated
derived to base conversions and the execution of copy-constructors.
N.B. This implementation doesn't support the execution of a
copy-constructor from within the runtime for now. Adding support for
that functionality is quite difficult due to things like default
argument expressions which may evaluate arbitrary code hiding in the
copy-constructor's parameters.
Differential Revision: http://reviews.llvm.org/D8066
llvm-svn: 231328
Currently, users get error messages about RTTI descriptor mangling with
no useful source location. This addresses that.
Another approach would be to disable C++ exceptions by default in the
driver when using the Microsoft C++ ABI. However, this makes it
impossible to parse system headers that use exception handling
constructs. By delaying the error to IRgen, we can figure out if we
actually need to emit code for this construct. Additionally, users who
are only interested in building refactoring tools on Windows still get a
correct AST without having to add flags. Finally, this is consistent
with what we do for SEH.
llvm-svn: 207999