This reapplies r224503 along with a fix for compiling Fortran by having the
clang driver invoke gcc (see r224546, where it was reverted). I have added
a testcase for that as well.
Original commit message:
It is often convenient to use -save-temps to collect the intermediate
results of a compilation, e.g., when triaging a bug report. Besides the
temporary files for preprocessed source and assembly code, this adds the
unoptimized bitcode files as well.
This adds a new BackendJobAction, which is mostly mechanical, to run after
the CompileJobAction. When not using -save-temps, the BackendJobAction is
combined into one job with the CompileJobAction, similar to the way the
integrated assembler is handled. I've implemented this entirely as a
driver change, so under the hood, it is just using -disable-llvm-optzns
to get the unoptimized bitcode.
Based in part on a patch by Steven Wu.
rdar://problem/18909437
llvm-svn: 224688
This reverts commit r224503.
It broke compilation of fortran through the Clang driver. Previously
`clang -c t.f` would invoke `gcc t.f` and `clang -cc1as`, but now it
tries to call `clang -cc1 t.f` which fails for obvious reasons.
llvm-svn: 224546
It is often convenient to use -save-temps to collect the intermediate
results of a compilation, e.g., when triaging a bug report. Besides the
temporary files for preprocessed source and assembly code, this adds the
unoptimized bitcode files as well.
This adds a new BackendJobAction, which is mostly mechanical, to run after
the CompileJobAction. When not using -save-temps, the BackendJobAction is
combined into one job with the CompileJobAction, similar to the way the
integrated assembler is handled. I've implemented this entirely as a
driver change, so under the hood, it is just using -disable-llvm-optzns
to get the unoptimized bitcode.
Based in part on a patch by Steven Wu.
rdar://problem/18909437
llvm-svn: 224503
- We actually pretend that we have two separate types for LLVM assembly/bitcode because we need to use the standard suffixes with LTO ('clang -O4 -c t.c' should generate 't.o').
It is now possible to do something like:
$ clang -emit-llvm -S t.c -o t.ll ... assorted other compile flags ...
$ clang -c t.ll -o t.o ... assorted other compile flags ...
and expect that the output will be almost* identical to:
$ clang -c t.c -o t.o ... assorted other compile flags ...
because all the target settings (default CPU, target features, etc.) will all be initialized properly by the driver/frontend.
*: This isn't perfect yet, because in practice we will end up running the optimization passes twice. It's possible to get something equivalent out with a well placed -mllvm -disable-llvm-optzns, but I'm still thinking about the cleanest way to solve this problem more generally.
llvm-svn: 105584
- -emit-llvm no longer changes what compilation steps are done.
- -emit-llvm and -emit-llvm -S write output files with .o and .s
suffixes, respectively.
- <rdar://problem/6714125> clang-driver should support -O4 and -flto,
like llvm-gcc
llvm-svn: 67645