can be different from the normal variable maximum.
Add an error diagnostic for when TLS variables exceed maximum TLS alignment.
Currenty only PS4 sets an explicit maximum TLS alignment.
Patch by Charles Li!
llvm-svn: 242198
We referred to all declaration in definitions in our diagnostic messages
which is can be inaccurate. Instead, classify the declaration and emit
an appropriate diagnostic for the new declaration and an appropriate
note pointing to the old one.
This fixes PR24116.
llvm-svn: 242190
Attribute names usually support an alternate spelling that uses double
underscores before and after the attribute name, like e.g. attribute
((__aligned__)) for attribute ((aligned)). This is necessary to allow
use of attributes in system headers without polluting the name space.
However, for attribute ((enable_if)) that alternate spelling does not
work correctly. This is because of code in Parser::ParseGNUAttributeArgs
(ParseDecl.cpp) that specifically checks for the "enable_if" spelling
without allowing the alternate spelling.
Similar code in ParseDecl.cpp uses the normalizeAttrName helper to allow
both spellings. This patch adds use of that helper for the "enable_if"
check as well, which fixes attribute ((__enable_if__)).
Differential Revision: http://reviews.llvm.org/D11142
llvm-svn: 242029
This matches the implementation of the gcc support for the same
feature, including checking the values set up by libgcc at runtime.
The structure looks like this:
unsigned int __cpu_vendor;
unsigned int __cpu_type;
unsigned int __cpu_subtype;
unsigned int __cpu_features[1];
with a set of enums to match various fields that are field out after
parsing the output of the cpuid instruction.
This also adds a set of errors checking for valid input (and cpu).
compiler-rt support for this and the other builtins in this family
(__builtin_cpu_init and __builtin_cpu_is) are forthcoming.
llvm-svn: 240994
Several tests wouldn't pass when executed on an armv7a_pc_linux triple
due to the non-default arm_aapcs calling convention produced on the
function definitions in the IR output. Account for this with the
application of a little regex.
Patch by Ying Yi.
llvm-svn: 240971
Addresses a conflict with glibc's __nonnull macro by renaming the type
nullability qualifiers as follows:
__nonnull -> _Nonnull
__nullable -> _Nullable
__null_unspecified -> _Null_unspecified
This is the major part of rdar://problem/21530726, but does not yet
provide the Darwin-specific behavior for the old names.
llvm-svn: 240596
The ARM _MoveToCoprocessor and _MoveFromCoprocessor builtins require
integer constants for most arguments, but clang was not checking that.
With this change, we now report meaningful errors instead of crashing
in the backend.
llvm-svn: 240463
Regular function calls (such as to cabs()) run into the same problem
with handling dependent exprs, not just builtins with custom type
checking.
Fixes PR23775.
llvm-svn: 240443
This generalizes the checking of null arguments to also work with
values of pointer-to-function, reference-to-function, and block
pointer type, using the nullability information within the underling
function prototype to extend non-null checking, and diagnoses returns
of 'nil' within a function with a __nonnull return type.
Note that we don't warn about nil returns from Objective-C methods,
because it's common for Objective-C methods to mimic the nil-swallowing
behavior of the receiver by checking ostensibly non-null parameters
and returning nil from otherwise non-null methods in that
case.
It also diagnoses (via a separate flag) conversions from nullable to
nonnull pointers. It's a separate flag because this warning can be noisy.
llvm-svn: 240153
Introduces the type specifiers __nonnull, __nullable, and
__null_unspecified that describe the nullability of the pointer type
to which the specifier appertains. Nullability type specifiers improve
on the existing nonnull attributes in a few ways:
- They apply to types, so one can represent a pointer to a non-null
pointer, use them in function pointer types, etc.
- As type specifiers, they are syntactically more lightweight than
__attribute__s or [[attribute]]s.
- They can express both the notion of 'should never be null' and
also 'it makes sense for this to be null', and therefore can more
easily catch errors of omission where one forgot to annotate the
nullability of a particular pointer (this will come in a subsequent
patch).
Nullability type specifiers are maintained as type sugar, and
therefore have no effect on mangling, encoding, overloading,
etc. Nonetheless, they will be used for warnings about, e.g., passing
'null' to a method that does not accept it.
This is the C/C++ part of rdar://problem/18868820.
llvm-svn: 240146
Base type of attribute((mode)) can actually be a vector type.
The patch is to distinguish between base type and base element type.
This fixes http://llvm.org/PR17453.
Differential Revision: http://reviews.llvm.org/D10058
llvm-svn: 240125
in section 10.1, __arm_{w,r}sr{,p,64}.
This includes arm_acle.h definitions with builtins and codegen to support
these, the intrinsics are implemented by generating read/write_register calls
which get appropriately lowered in the backend based on the register string
provided. SemaChecking is also implemented to fault invalid parameters.
Differential Revision: http://reviews.llvm.org/D9697
llvm-svn: 239737
Since we're ignoring the tune= and fpmath= attributes go ahead
and add a warning alerting people to the fact that we're going
to ignore that part of it during code generation and tie it to
the attribute warning set.
llvm-svn: 239583
Modeled after the gcc attribute of the same name, this feature
allows source level annotations to correspond to backend code
generation. In llvm particular parlance, this allows the adding
of subtarget features and changing the cpu for a particular function
based on source level hints.
This has been added into the existing support for function level
attributes without particular verification for any target outside
of whether or not the backend will support the features/cpu given
(similar to section, etc).
llvm-svn: 239579
Based on previous discussion on the mailing list, clang currently lacks support
for C99 partial re-initialization behavior:
Reference: http://lists.cs.uiuc.edu/pipermail/cfe-dev/2013-April/029188.html
Reference: http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_253.htm
This patch attempts to fix this problem.
Given the following code snippet,
struct P1 { char x[6]; };
struct LP1 { struct P1 p1; };
struct LP1 l = { .p1 = { "foo" }, .p1.x[2] = 'x' };
// this example is adapted from the example for "struct fred x[]" in DR-253;
// currently clang produces in l: { "\0\0x" },
// whereas gcc 4.8 produces { "fox" };
// with this fix, clang will also produce: { "fox" };
Differential Review: http://reviews.llvm.org/D5789
llvm-svn: 239446
Summary:
This modifies Clang to reflect that under pre-C99 ISO C, decimal
constants may have type `unsigned long` even if they do not contain `u`
or `U` in their suffix (C90 subclause 6.1.3.2 paragraph 5). The same is
done for C++ without C++11 which--because of undefined behaviour--allows
for behaviour compatible with ISO C90 in the case of an unsuffixed
decimal literal and is otherwise identical to C90 in its treatment of
integer literals (C++03 subclause 2.13.1 [lex.icon] paragraph 2).
Messages are added to the `c99-compat` and `c++11-compat` groups to warn
on such literals, since they behave differently under the newer
standards.
Fixes PR 16678.
Test Plan:
A new test file is added to exercise both pre-C99/C++11 and C99/C++11-up
on decimal literals with no suffix or suffixes `l`/`L` for both 32-bit
and 64-bit `long`.
In the file, 2^31 (being `INT_MAX+1`) is tested for the expected type
using `__typeof__` and multiple declarations of the same entity. 2^63
is similarly tested when it is within the range of `unsigned long`.
Preprocessor arithmetic tests are added to ensure consistency given
that Clang (like GCC) uses greater than 32 bits for preprocessor
arithmetic even when `long` and `unsigned long` is 32 bits and a
pre-C99/C++11 mode is in effect.
Tests added:
test/Sema/PR16678.c
Reviewers: fraggamuffin, rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9794
llvm-svn: 239356
input / output with memory constraint.
One generally can't get address of a bit field, so the general solution is to
error on such cases. GCC does the same.
Patch by Andrey Bokhanko
Differential Revision: http://reviews.llvm.org/D10086
llvm-svn: 239153
Allows StmtPrinter to print old style field designators in
initializers, fixing an issue where we would print the following
invalid code:
struct A a = {b: = 3, .c = 4};
Patch by Nick Sumner. Thanks!
llvm-svn: 238517
Note: __declspec is also temporarily enabled when compiling for a CUDA target because there are implementation details relying on __declspec(property) support currently. When those details change, __declspec should be disabled for CUDA targets.
llvm-svn: 238238
An AtomicType might be hidden behind arbitrary levels of typedefs.
getAs<> will reliably walk through the sugar to get the underlying
AtomicType.
This fixes PR23638.
llvm-svn: 238083
Add a check for bool-like conversions for the condition expression of
conditional operators. This is similiar to the checking of condition
expressions of if statements, for-loops, while-loops, and do-while loops.
Specificially, this is to fix the problem of assert("message") not triggering
-Wstring-conversion when the assert macro uses a conditional operator.
llvm-svn: 237856
VerifyBitField must be called if we are to form a bitfield FieldDecl.
We will not verify the bitfield if the decl is known to be malformed in
other ways; pretend that we don't have a bitfield if this happens.
llvm-svn: 235816
Don't assume it's always is. This prevents a crash in Sema while
trying to merge return type for a builtin w/out function prototype.
PR: 23086
Differential Revision: http://reviews.llvm.org/D9235
Reviewed by: rsmith
llvm-svn: 235806
The GCC construct __attribute__((aligned)) is defined to set alignment
to "the default alignment for the target architecture" according to
the GCC documentation:
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target that supports vector operations.
The default alignment is fixed for a particular target ABI.
clang currently hard-coded an alignment of 16 bytes for that construct,
which is correct on some platforms (including X86), but wrong on others
(including SystemZ). Since this value is ABI-relevant, it is important
to get correct for compatibility purposes.
This patch adds a new TargetInfo member "DefaultAlignForAttributeAligned"
that targets can set to the appropriate default __attribute__((aligned))
value.
Note that I'm deliberately *not* using the existing "SuitableAlign"
value, which is used to set the pre-defined macro __BIGGEST_ALIGNMENT__,
since those two values may not be the same on all platforms. In fact,
on X86, __attribute__((aligned)) always uses 16-byte alignment, while
__BIGGEST_ALIGNMENT__ may be larger if AVX-2 or AVX-512 are supported.
(This is actually not yet correctly implemented in clang either.)
The patch provides a value for DefaultAlignForAttributeAligned only for
SystemZ, and leaves the default for all other targets at 16, which means
no visible change in behavior on all other targets. (The value is still
wrong for some other targets, but I'd prefer to leave it to the target
maintainers for those platforms to fix.)
llvm-svn: 235397
SystemZ prefers to align all global variables to two bytes, which is
implemented by setting the TargetInfo member MinGlobalAlign.
However, for compatibility with existing compilers this should *not*
change the ABI alignment value as retrieved via __alignof__, which
it currently does.
This patch fixes the issue by having ASTContext::getDeclAlign ignore
the MinGlobalAlign setting in the ForAlignof case.
Since SystemZ is the only platform setting MinGlobalAlign, this should
cause no change for any other target.
llvm-svn: 235395
We already check that statement expressions are in a function or block,
but we didn't do anything with that information. Now we use that
DeclContext for the duration of the statement expression. Otherwise,
we'd treat statement expression locals as static data members and go
into the weeds.
llvm-svn: 235335
Previously, many error messages would simply be "read-only variable is not
assignable" This change provides more information about why the variable is
not assignable, as well as note to where the const is located.
Differential Revision: http://reviews.llvm.org/D4479
llvm-svn: 234677