Two flags are introduced:
- preferred display language (as in, ObjC vs. C++)
- summary capping (as in, should a limit be put to the amount of data retrieved)
The meaning - if any - of these options is for individual formatters to establish
The topic of a subsequent commit will be to actually wire these through to individual data formatters
llvm-svn: 221482
The problem was that SBTarget::ReadMemory() was making a new section offset lldb_private::Address by doing:
size_t
SBTarget::ReadMemory (const SBAddress addr,
void *buf,
size_t size,
lldb::SBError &error)
{
...
lldb_private::Address addr_priv(addr.GetFileAddress(), NULL);
bytes_read = target_sp->ReadMemory(addr_priv, false, buf, size, err_priv);
This is wrong. If you get the file addresss from the "addr" argument and try to read memory using that, it will think the file address is a load address and it will try to resolve it accordingly. This will work fine if your executable is loaded at the same address (no slide), but it won't work if there is a slide.
The fix is to just pass along the "addr.ref()" instead of making a new addr_priv as this will pass along the lldb_private::Address that is inside the SBAddress (which is what we want), and not always change it into something that becomes a load address (if we are running), or abmigious file address (think address zero when you have 150 shared libraries that have sections that start at zero, which one would you pick). The main reason for passing a section offset address to SBTarget::ReadMemory() is so you _can_ read from the actual section + offset that is specified in the SBAddress.
llvm-svn: 221213
If it has an Address object, it is assumed to be Valid.
Change SBAddress to always have an Address object and check
whether it is valid or not in those case.
This is fixing a subtle problem where we ended up with
a SBAddress with an Address of LLDB_INVALID_ADDRESS could
run through a copy constructor and turn into an SBAddress
with no Address object being backed (because it wasn't
distinguishing between invalid-Address versus no-Address.)
The cost of an Address object is not high and this will be
an easy mistake for someone else to make; I'm fixing
SBAddress so it doesn't come up again.
<rdar://problem/18069407>
llvm-svn: 221002
This works similarly to the {thread/frame/process/target.script:...} feature - you write a summary string, part of which is
${var.script:someFuncName}
someFuncName is expected to be declared as
def someFuncName(SBValue,otherArgument) - essentially the same as a summary function
Since . -> [] are the only allowed separators, and % is used for custom formatting, .script: would not be a legitimate symbol anyway, which makes this non-ambiguous
llvm-svn: 220821
New functions to give client applications to tools to discover target byte sizes
for addresses prior to ReadMemory. Also added GetPlatform and ReadMemory to the
SBTarget class, since they seemed to be useful utilities to have.
Each new API has had a test case added.
http://reviews.llvm.org/D5867
llvm-svn: 220372
There were many issues with synchronous mode that we discovered when started to try and add a "batch" mode. There was a race condition where the event handling thread might consume events when in sync mode and other times the Process::WaitForProcessToStop() would consume them. This also led to places where the Process IO handler might or might not get popped when it needed to be.
llvm-svn: 220254
after all the commands have been executed except if one of the commands was an execution control
command that stopped because of a signal or exception.
Also adds a variant of SBCommandInterpreter::HandleCommand that takes an SBExecutionContext. That
way you can run an lldb command targeted at a particular target, thread or process w/o having to
select same before running the command.
Also exposes CommandInterpreter::HandleCommandsFromFile to the SBCommandInterpreter API, since that
seemed generally useful.
llvm-svn: 219654
Reviewed at http://reviews.llvm.org/D5738
This adds an SB API into SBProcess:
bool SBProcess::IsInstrumentationRuntimePresent(InstrumentationRuntimeType type);
which simply tells whether a particular InstrumentationRuntime (read "ASan") plugin is present and active.
llvm-svn: 219560
do that (RunCommandInterpreter, HandleCommands, HandleCommandsFromFile) to gather
the options into an options class. Also expose that to the SB API's.
Change the way the "-o" options to the lldb driver are processed so:
1) They are run synchronously - didn't really make any sense to run the asynchronously.
2) The stop on error
3) "quit" in one of the -o commands will not quit lldb - not the command interpreter
that was running the -o commands.
I added an entry to the run options to stop-on-crash, but I haven't implemented that yet.
llvm-svn: 219553
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
output style can be customized. Change the built-in default to be
more similar to gdb's disassembly formatting.
The disassembly-format for a gdb-like output is
${addr-file-or-load} <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>:
The disassembly-format for the lldb style output is
{${function.initial-function}{${module.file.basename}`}{${function.name-without-args}}:\n}{${function.changed}\n{${module.file.basename}`}{${function.name-without-args}}:\n}{${current-pc-arrow} }{${addr-file-or-load}}:
The two backticks in the lldb style formatter triggers the sub-expression evaluation in
CommandInterpreter::PreprocessCommand() so you can't use that one as-is ... changing to
use ' characters instead of ` would work around that.
<rdar://problem/9885398>
llvm-svn: 219544
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
This is the first step in getting ConnectionFileDescriptor ported
to Windows. It implements a connection against a disk file for
windows. This supports connection strings of the form file://PATH
which are currently supported only on posix platforms in
ConnectionFileDescriptor.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5608
llvm-svn: 219145
As part of getting ConnectionFileDescriptor working on Windows,
there is going to be alot of platform specific work to be done.
As a result, the implementation is moving into Host. This patch
performs the code move and fixes up call-sites appropriately.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5548
llvm-svn: 219143
CMake build of any part of LLVM with LLDB checked out fails immediately.
=[
We appear to not even have a build bot covering the CMake build of LLDB
which makes this truly terrible. That needs to be fixed immediately.
llvm-svn: 218831
the user level. It adds the ability to invent new stepping modes implemented by python classes,
and to view the current thread plan stack and to some extent alter it.
I haven't gotten to documentation or tests yet. But this should not cause any behavior changes
if you don't use it, so its safe to check it in now and work on it incrementally.
llvm-svn: 218642
Changes include:
- fix it so you can select the "host" platform using "platform select host"
- change all callbacks that create platforms to returns shared pointers
- fix TestImageListMultiArchitecture.py to restore the "host" platform by running "platform select host"
- Add a new "PlatformSP Platform::Find(const ConstString &name)" method to get a cached platform
- cache platforms that are created and re-use them instead of always creating a new one
llvm-svn: 218145
For the Objective-C case, we do not have a "function type" notion, so we actually end up wrapping the clang ObjCMethodDecl in the Impl object, and ask function-y questions of it
In general, you can always ask for return type, number of arguments, and type of each argument using the TypeMemberFunction layer - but in the C++ case, you can also acquire a Type object for the function itself, which instead you can't do in the Objective-C case
llvm-svn: 218132
This patch moves creates a thread abstraction that represents a
thread running inside the LLDB process. This is a replacement for
otherwise using lldb::thread_t, and provides a platform agnostic
interface to managing these threads.
Differential Revision: http://reviews.llvm.org/D5198
Reviewed by: Jim Ingham
llvm-svn: 217460
LLDB had implemented its own DynamicLibrary class for plugin
support. LLVM has an equivalent mechanism, so this patch deletes
the duplicated code in LLDB and updates LLDB to reference the
mechanism provided by LLVM.
llvm-svn: 216606
This should bring HostInfo up to 99% completion. The remainder
of code in Host will be split into instantiatable classes
representing host processes, threads, dynamic libraries, and
process launching strategies.
llvm-svn: 216230
This continues the effort to get Host code moved over to HostInfo,
and removes many more instances of preprocessor defines along the
way.
llvm-svn: 216195
from Python. If you don't need to refer to the result in another expression, there's no
need to bloat the persistent variable table with them since you already have the result
SBValue to work with.
<rdar://problem/17963645>
llvm-svn: 215244
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
This fixes a diagnostic emitted by GCC.
llvm-svn: 213696
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
This fixes a warning emitted by GCC.
Differential Revision: http://reviews.llvm.org/D4624
llvm-svn: 213692
Any commands that want interactivity (stdin) will need to be executed through the normal command interpreter using the debugger's in/out/err file handles, or by using "command source".
Individual commands through the API will have their STDIN disabled. The STDOUT and STDERR will be redirected into the SBCommandReturnObject argument to SBCommandInterpreter::HandleCommand() as usual.
This helps with a deadlock situation in an IDE (Xcode) where the IDE was managing the breakpoint actions by setting a breakpoint callback and doing things manually.
<rdar://problem/17386271>
llvm-svn: 213023
See http://reviews.llvm.org/D4221 for details.
This commit allows you to control the signals that lldb will suppress, stop or forward using the Python and C++ APIs.
Change by Russell Harmon.
Xcode build system changes (and any mistakes) by Todd Fiala. Tested on MacOSX 10.9.3 and Xcode 6 beta. (Xcode 5 is hitting the dependency checker crasher on all my systems).
llvm-svn: 211526
Address the 'variable set but not used' warning from GCC. In some cases a few
additional calls were removed where there should be no visible side effects of
the calls (i.e. should not effect any cached state).
llvm-svn: 210879
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
the SystemRuntime to check if a thread will have any problems
performing an inferior function call so the driver can skip
making that function call on that thread. Often the function
call can be executed on another thread instead.
<rdar://problem/16777874>
llvm-svn: 208732
Add a callback that will allow an expression to be cancelled between the
expression evaluation stages (for the ClangUserExpressions.)
<rdar://problem/16790467>, <rdar://problem/16573440>
llvm-svn: 207944
currently associated with a given thread, on relevant targets.
Change the queue detection code to verify that the queues
associated with all live threads are included in the list.
<rdar://problem/16411314>
llvm-svn: 207160
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
You can either provide the function name, or function body text.
Also propagate the compilation error up from where it is checked so we can report compilation errors.
<rdar://problem/9898371>
llvm-svn: 205380
These changes were written by Greg Clayton, Jim Ingham, Jason Molenda.
It builds cleanly against TOT llvm with xcodebuild. I updated the
cmake files by visual inspection but did not try a build. I haven't
built these sources on any non-Mac platforms - I don't think this
patch adds any code that requires darwin, but please let me know if
I missed something.
In debugserver, MachProcess.cpp and MachTask.cpp were renamed to
MachProcess.mm and MachTask.mm as they picked up some new Objective-C
code needed to launch processes when running on iOS.
llvm-svn: 205113
for customizing "step-in" behavior (e.g. step-in doesn't step into code with no debug info), but also
the behavior of step-in/step-out and step-over when they step out of the frame they started in.
I also added as a proof of concept of this reworking a mode for stepping where stepping out of a frame
into a frame with no debug information will continue stepping out till it arrives at a frame that does
have debug information. This is useful when you are debugging callback based code where the callbacks
are separated from the code that initiated them by some library glue you don't care about, among other
things.
llvm-svn: 203747
items; the backing Queue object has the number of pending items
already cached. Also, add SBQueue::GetNumRunningItems() to provide
that information.
<rdar://problem/16272016>
llvm-svn: 203420
hold a strong pointer to that extended backtrace thread in the Process
just like we do for asking a thread's extended backtrace.
Also, give extended backtrace threads an invalid ThreadIndexID number.
We'll still give them valid thread_id's. Clients who want to know the
original thread's IndexID can call GetExtendedBacktraceOriginatingIndexID().
<rdar://problem/16126034>
llvm-svn: 203088
read during materialization. First of all, report
if we can't read the data for some reason. Second,
consult the ValueObject's error and report that if
there's some problem.
<rdar://problem/16074201>
llvm-svn: 202552
Also remove SetStopOthers from the ThreadPlanCallFunction, because if the value you have doesn't match what is
in the EvaluateExpressionOptions the plan was passed when created it won't work correctly.
llvm-svn: 202464
Fix a bug where calling SBFrame::FindValue() would cause a copy of all variables in the block to be inserted in the frame's variable list, regardless of whether those same variables were there or not - which means one could end up with a frame with lots of duplicate copies of the same variables
llvm-svn: 201614
ObjectFile::SetLoadAddress (Target &target,
lldb::addr_t value,
bool value_is_offset);
Now "value" is a slide if "value_is_offset" is true, and "value" is an image base address otherwise. All previous usage of this API was using slides.
Updated the ObjectFileELF and ObjectFileMachO SetLoadAddress methods to do the right thing.
Also updated the ObjectFileMachO::SetLoadAddress() function to not load __LINKEDIT when it isn't needed and to only load sections that belong to the executable object file.
llvm-svn: 201003
libldi library to collect extended backtrace information; switch
to the libBacktraceRecording library and its APIs. Complete the
work of adding QueueItems to Queues and allow for the QueueItems
to be interrogated about their extended backtraces in turn.
There's still cleanup and documentation to do on this code but the
code is functional and I it's a good time to get the work-in-progress
checked in.
<rdar://problem/15314027>
llvm-svn: 200822
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
SBType SBType::GetTypedefedType();
Also added the ability to get a type by type ID from a SBModule:
SBType SBModule::GetTypeByID (lldb::user_id_t uid);
llvm-svn: 199939
The "type format add" command gets a new flag --type (-t). If you pass -t <sometype>, upon fetching the value for an object of your type,
LLDB will display it as-if it was of enumeration type <sometype>
This is useful in cases of non-contiguous enums where there are empty gaps of unspecified values, and as such one cannot type their variables as the enum type,
but users would still like to see them as-if they were of the enum type (e.g. DWARF field types with their user-reserved ranges)
The SB API has also been improved to handle both types of formats, and a test case is added
llvm-svn: 198105
So, rename the class for what it truly is: a FormattersContainer
Also do a bunch of related text substitutions in the interest of overall naming clarity
llvm-svn: 197795
While investigating test suite failures when running the test suite remotely, I noticed we had 3 copies of code that launched a process:
1 - in "process launch" command
2 - SBTarget::Launch() with args
3 - SBTarget::Launch() with SBLaunchInfo
"process launch" was launching through the platform if it was supported (this is needed for remote debugging) and the 2 and 3 were not.
Now all code is in one place.
llvm-svn: 197247
libdispatch aka Grand Central Dispatch (GCD) queues. Still fleshing out the
documentation and testing of these but the overall API is settling down so it's
a good time to check it in.
<rdar://problem/15600370>
llvm-svn: 197190
<rdar://problem/15314403>
This patch adds a new lldb_private::SectionLoadHistory class that tracks what shared libraries were loaded given a process stop ID. This allows us to keep a history of the sections that were loaded for a time T. Many items in history objects will rely upon the process stop ID in the future.
llvm-svn: 196557
lldb_private::Debugger was #including some "lldb/API" header files which causes tools (lldb-platform and lldb-gdbserver) that link against the internals only (no API layer) to fail to link depending on which calls were being used.
Also fixed the current working directory so that it gets set correctly for remote test suite runs. Now the remote working directory is set to: "ARCH/TESTNUM/..." where ARCH is the current architecture name and "TESTNUM" is the current test number.
Fixed the "lldb-platform" and "lldb-gdbserver" to not warn about mismatched visibility settings by having each have their own exports file which contains nothing. This forces all symbols to not be exported, and also quiets the linker warnings.
llvm-svn: 196141
Example code:
remote_platform = lldb.SBPlatform("remote-macosx");
remote_platform.SetWorkingDirectory("/private/tmp")
debugger.SetSelectedPlatform(remote_platform)
connect_options = lldb.SBPlatformConnectOptions("connect://localhost:1111");
err = remote_platform.ConnectRemote(connect_options)
if err.Success():
print >> result, 'Connected to remote platform:'
print >> result, 'hostname: %s' % (remote_platform.GetHostname())
src = lldb.SBFileSpec("/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework", False)
dst = lldb.SBFileSpec()
# copy src to platform working directory since "dst" is empty
err = remote_platform.Install(src, dst);
if err.Success():
print >> result, '%s installed successfully' % (src)
else:
print >> result, 'error: failed to install "%s": %s' % (src, err)
Implemented many calls needed in lldb-platform to be able to install a directory that contains symlinks, file and directories.
The remote lldb-platform can now launch GDB servers on the remote system so that remote debugging can be spawned through the remote platform when connected to a remote platform.
The API in SBPlatform is subject to change and will be getting many new functions.
llvm-svn: 195273
(and same thing to Thread base class) which can be used when looking
at an ExtendedBacktrace thread; it will try to find the IndexID() of
the original thread that was executing this backtrace when it was
recorded. If lldb can't find a record of that thread, it will return
the same value as IndexID() for the ExtendedBacktrace thread.
llvm-svn: 194912
something; add a new ExtendedThreadList to Process where they can be retained
for the duration of a public stop.
<rdar://problem/15314068>
llvm-svn: 194366
Still working out some of the details of these classes but
I wanted to get the overall structure checked in.
<rdar://problem/15314068>
llvm-svn: 194245
It completes the job of using EvaluateExpressionOptions consistently throughout
the inferior function calling mechanism in lldb begun in Greg's patch r194009.
It removes a handful of alternate calls into the ClangUserExpression/ClangFunction/ThreadPlanCallFunction which
were there for convenience. Using the EvaluateExpressionOptions removes the need for them.
Using that it gets the --debug option from Greg's patch to work cleanly.
It also adds another EvaluateExpressionOption to not trap exceptions when running expressions. You shouldn't
use this option unless you KNOW your expression can't throw beyond itself. This is:
<rdar://problem/15374885>
At present this is only available through the SB API's or python.
It fixes a bug where function calls would unset the ObjC & C++ exception breakpoints without checking whether
they were set by somebody else already.
llvm-svn: 194182
GetThreadOriginExtendedBacktraceTypeAtIndex methods to
SBProcess.
Add documentation for the GetQueueName and GetQueueID methods
to SBThread.
<rdar://problem/15314369>
llvm-svn: 194063
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
In almost all cases, the misuse is about "%lu" being used instead of the correct "%zu" (even though these are compatible on 64-bit platforms in practice). There are even a couple of cases where "%ld" (ie., signed int) is used instead of "%zu", and one where "%lu" is used instead of "%" PRIu64.
Fixes bug #17551.
Patch by "/dev/humancontroller"
llvm-svn: 193832
This commit reimplements the TypeImpl class (the class that backs SBType) in terms of a static,dynamic type pair
This is useful for those cases when the dynamic type of an ObjC variable can only be obtained in terms of an "hollow" type with no ivars
In that case, we could either go with the static type (+iVar information) or with the dynamic type (+inheritance chain)
With the new TypeImpl implementation, we try to combine these two sources of information in order to extract as much information as possible
This should improve the functionality of tools that are using the SBType API to do extensive dynamic type inspection
llvm-svn: 193564
Added a way to set hardware breakpoints from the "breakpoint set" command with the new "--hardware" option. Hardware breakpoints are not a request, they currently are a requirement. So when breakpoints are specified as hardware breakpoints, they might fail to be set when they are able to be resolved and should be used sparingly. This is currently hooked up for GDB remote debugging.
Linux and FreeBSD should quickly enable this feature if possible, or return an error for any breakpoints that are hardware breakpoint sites in the "virtual Error Process::EnableBreakpointSite (BreakpointSite *bp_site);" function.
llvm-svn: 192491
Implement SBTarget::CreateValueFromAddress() with a behavior equivalent to SBValue::CreateValueFromAddress()
(but without the need to grab an SBValue first just as a starting point to make up another SBValue out of whole cloth)
llvm-svn: 192239
Formats (as in "type format") are now included in categories
The only bit missing is caching formats along with synthetic children and summaries, which might be now desirable
llvm-svn: 192217
that all clients use them explicitly. This will hopefully
prevent any future confusion where things get cast to types
we don't expect.
<rdar://problem/15146458>
llvm-svn: 191984
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
with prefer_file_cache == false. This is what we want to do when
the user is doing a disassemble command -- show the actual memory
contents in case the memory has been corrupted or something -- but
when we're profiling functions for stepping or unwinding
(ThreadPlanStepRange::GetInstructionsForAddress,
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindP) we can read
__TEXT instructions directly out of the file, if it exists.
<rdar://problem/14397491>
llvm-svn: 190638
This allows the PC to be directly changed to a different line.
It's similar to the example python script in examples/python/jump.py, except implemented as a builtin.
Also this version will track the current function correctly even if the target line resolves to multiple addresses. (e.g. debugging a templated function)
llvm-svn: 190572
Summary:
This merge brings in the improved 'platform' command that knows how to
interface with remote machines; that is, query OS/kernel information, push
and pull files, run shell commands, etc... and implementation for the new
communication packets that back that interface, at least on Darwin based
operating systems via the POSIXPlatform class. Linux support is coming soon.
Verified the test suite runs cleanly on Linux (x86_64), build OK on Mac OS
X Mountain Lion.
Additional improvements (not in the source SVN branch 'lldb-platform-work'):
- cmake build scripts for lldb-platform
- cleanup test suite
- documentation stub for qPlatform_RunCommand
- use log class instead of printf() directly
- reverted work-in-progress-looking changes from test/types/TestAbstract.py that work towards running the test suite remotely.
- add new logging category 'platform'
Reviewers: Matt Kopec, Greg Clayton
Review: http://llvm-reviews.chandlerc.com/D1493
llvm-svn: 189295
plan providers from a "ThreadPlan *" to a "lldb::ThreadPlanSP". That was needed to fix
a bug where the ThreadPlanStepInRange wasn't checking with its sub-plans to make sure they
succeed before trying to proceed further. If the sub-plan failed and as a result didn't make
any progress, you could end up retrying the same failing algorithm in an infinite loop.
<rdar://problem/14043602>
llvm-svn: 186618
- MachO files now correctly extract the UUID all the time
- More file size and offset verification done for universal mach-o files to watch for truncated files
- ObjectContainerBSDArchive now supports enumerating all objects in BSD archives (.a files)
- lldb_private::Module() can not be properly constructed using a ModuleSpec for a .o file in a .a file
- The BSD archive plug-in shares its cache for GetModuleSpecifications() and the create callback
- Improved printing for ModuleSpec objects
llvm-svn: 186211
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
- ObjectFile::GetSymtab() and ObjectFile::ClearSymtab() no longer takes any flags
- Module coordinates with the object files and contain a unified section list so that object file and symbol file can share sections when they need to, yet contain their own sections.
Other cleanups:
- Fixed Symbol::GetByteSize() to not have the symbol table compute the byte sizes on the fly
- Modified the ObjectFileMachO class to compute symbol sizes all at once efficiently
- Modified the Symtab class to store a file address lookup table for more efficient lookups
- Removed Section::Finalize() and SectionList::Finalize() as they did nothing
- Improved performance of the detection of symbol files that have debug maps by excluding stripped files and core files, debug files, object files and stubs
- Added the ability to tell if an ObjectFile has been stripped with ObjectFile::IsStripped() (used this for the above performance improvement)
llvm-svn: 185990
There are two new classes:
lldb::SBModuleSpec
lldb::SBModuleSpecList
The SBModuleSpec wraps up a lldb_private::ModuleSpec, and SBModuleSpecList wraps up a lldb_private::ModuleSpecList.
llvm-svn: 185877
The semi-unofficial way of returning a status from a Python command was to return a string (e.g. return "no such variable was found") that LLDB would pick as a clue of an error having happened
This checkin changes that:
- SBCommandReturnObject now exports a SetError() call, which can take an SBError or a plain C-string
- script commands now drop any return value and expect the SBCommandReturnObject ("return object") to be filled in appropriately - if you do nothing, a success will be assumed
If your commands were relying on returning a value and having LLDB pick that up as an error, please change your commands to SetError() through the return object or expect changes in behavior
llvm-svn: 184893
The script was able to point out and save 40 bytes in each lldb_private::Section by being very careful where we need to have virtual destructors and also by re-ordering members.
llvm-svn: 184364
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// module.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this module.
///
/// @return
/// A list of types in this module that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBModule::GetTypes (uint32_t type_mask)
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// compile unit.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this compile
/// unit.
///
/// @return
/// A list of types in this compile unit that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny);
This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want.
llvm-svn: 184251
- exposing new accessors: formats/format, ..., that allow you to iterate over all formatters
e.g. sys_category = lldb.debugger.GetCategory("system").summary['char *']
- ensuring that C++-based synthetic children provider can at least print their description accurately, if nothing else
llvm-svn: 183805
settings set use-color [false|true]
settings set prompt "${ansi.bold}${ansi.fg.green}(lldb)${ansi.normal} "
also "--no-use-colors" on the command prompt
llvm-svn: 182609