Summary:
This commit integrates MainLoop into NativeProcessLinux. By registering a SIGCHLD handler with
the llgs main loop, we can get rid of the special monitor thread in NPL, which saves as a lot of
thread ping-pong when responding to client requests (e.g. qThreadInfo processing time has been
reduced by about 40%). It also makes the code simpler, IMHO.
Reviewers: ovyalov, clayborg, tberghammer, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11150
llvm-svn: 242305
Summary:
- Consolidate Unix signals selection in UnixSignals.
- Make Unix signals available from platform.
- Add jSignalsInfo packet to retrieve Unix signals from remote platform.
- Get a copy of the platform signal for each remote process.
- Update SB API for signals.
- Update signal utility in test suite.
Reviewers: ovyalov, clayborg
Subscribers: chaoren, jingham, labath, emaste, tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D11094
llvm-svn: 242101
Summary:
32-bit signed return value from ptrace got sign extended when being converted to
64-bit unsigned.
Also, replaced tabs with spaces in the source.
Reviewers: labath, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11047
llvm-svn: 241837
Summary:
This commit avoids the Platform instance when spawning or attaching to a process in lldb-server.
Instead, I have the server call a (static) method of NativeProcessProtocol directly. The reason
for this is that I believe that NativeProcessProtocol should be decoupled from the Platform
(after all, it always knows which platform it is running on, unlike the rest of lldb).
Additionally, the kind of platform actions a NativeProcessProtocol instance is likely to differ
greatly from the platform actions of the lldb client, so I think the separation makes sense.
After this, the only dependency NativeProcessLinux has on PlatformLinux is the ResolveExecutable
method, which needs additional refactoring.
This is a resubmit of r241672, after it was reverted due to build failueres on non-linux
platforms.
Reviewers: ovyalov, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10996
llvm-svn: 241796
platform-specific symbols that are not implemented on OS X.
The build error that caused this is
Undefined symbols for architecture x86_64:
"lldb_private::NativeProcessProtocol::Attach(unsigned long long, lldb_private::NativeProcessProtocol::NativeDelegate&, std::__1::shared_ptr<lldb_private::NativeProcessProtocol>&)", referenced from:
lldb_private::process_gdb_remote::GDBRemoteCommunicationServerLLGS::AttachToProcess(unsigned long long) in liblldb-core.a(GDBRemoteCommunicationServerLLGS.o)
"lldb_private::NativeProcessProtocol::Launch(lldb_private::ProcessLaunchInfo&, lldb_private::NativeProcessProtocol::NativeDelegate&, std::__1::shared_ptr<lldb_private::NativeProcessProtocol>&)", referenced from:
lldb_private::process_gdb_remote::GDBRemoteCommunicationServerLLGS::LaunchProcess() in liblldb-core.a(GDBRemoteCommunicationServerLLGS.o)
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
llvm-svn: 241688
Summary:
This commit avoids the Platform instance when spawning or attaching to a process in lldb-server.
Instead, I have the server call a (static) method of NativeProcessProtocol directly. The reason
for this is that I believe that NativeProcessProtocol should be decoupled from the Platform
(after all, it always knows which platform it is running on, unlike the rest of lldb).
Additionally, the kind of platform actions a NativeProcessProtocol instance is likely to differ
greatly from the platform actions of the lldb client, so I think the separation makes sense.
After this, the only dependency NativeProcessLinux has on PlatformLinux is the ResolveExecutable
method, which needs additional refactoring.
Reviewers: ovyalov, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10996
llvm-svn: 241672
Summary:
This changes PtraceWrapper to return an Error, while the actual result is in an pointer parameter
(instead of the other way around). Also made a couple of PtraceWrapper arguments default to zero.
This arrangement makes a lot of the code much simpler.
Test Plan: Tests pass on linux. It compiles on android arm64/mips64.
Reviewers: chaoren, mohit.bhakkad
Subscribers: tberghammer, aemerson, lldb-commits
Differential Revision: http://reviews.llvm.org/D10808
llvm-svn: 241079
Summary:
This removes a lot of boilerplate, which was needed to execute monitor operations. Previously one
needed do declare a separate class for each operation which would manually capture all needed
arguments, which was very verbose. In addition to less code, I believe this also makes the code
more readable, since now the implementation of the operation can be physically closer to the code
that invokes it.
Test Plan: Code compiles on x86, arm and mips, tests pass on x86 linux.
Reviewers: tberghammer, chaoren
Subscribers: aemerson, lldb-commits
Differential Revision: http://reviews.llvm.org/D10694
llvm-svn: 240772
Summary:
Currently, the local-only path fails about 50% of the tests, which means that: a) nobody is using
it; and b) the remote debugging path is much more stable. This commit removes the local-only
linux debugging code (ProcessLinux) and makes remote-loopback the only way to debug local
applications (the same architecture as OSX). The ProcessPOSIX code is moved to the FreeBSD
directory, which is now the only user of this class. Hopefully, FreeBSD will soon move to the new
architecture as well and then this code can be removed completely.
Test Plan: Test suite passes via remote stub.
Reviewers: emaste, vharron, ovyalov, clayborg
Subscribers: tberghammer, emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D10661
llvm-svn: 240543
SUMMARY:
This patch implements
1. Emulation of MIPS32 branch instructions
2. Enable single-stepping for MIPS32 instructions
3. Correction in emulation of MIPS64 branch instructions with delay slot
4. Adjust breakpoint address when breakpoint is hit in a forbidden slot of compact branch instruction
Reviewers: clayborg
Subscribers: mohit.bhakkad, sagar, bhushan, lldb-commits, emaste, nitesh.jain
Differential Revision: http://reviews.llvm.org/D10596
llvm-svn: 240373
Summary:
Memory reads using the ptrace API need to be executed on a designated thread
and in 4-byte increments. The process_vm_read syscall has no such requirements
and it is about 50 times faster. This patch makes lldb-server use the faster
API if the target kernel supports it. Kernel support for this feature is
determined at runtime. Using process_vm_writev in the same manner is more
complicated since this syscall (unlike ptrace) respects page protection settings
and so it cannot be used to set a breakpoint, since code pages are typically
read-only. However, memory writes are not currently a performance bottleneck as
they happen much more rarely.
Test Plan: all tests continue to pass
Reviewers: ovyalov, vharron
Subscribers: tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D10488
llvm-svn: 239924
Summary:
This should solve the issue of sending denormalized paths over gdb-remote
if we stick to GetPath(false) in GDBRemoteCommunicationClient, and let the
server handle any denormalization.
Reviewers: ovyalov, zturner, vharron, clayborg
Reviewed By: clayborg
Subscribers: tberghammer, emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D9728
llvm-svn: 238604
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
Summary:
Previously, we reported inferior receiving SIGSEGV (or SIGILL, SIGFPE, SIGBUS) as an "exception"
to LLDB, presumably to match OSX behaviour. Beside the fact that we were basically lying to the
user, this was also causing problems with inferiors which handle SIGSEGV by themselves, since
LLDB was unable to reinject this signal back into the inferior.
This commit changes LLGS to report SIGSEGV as a signal. This has necessitated some changes in the
test-suite, which had previously used eStopReasonException to locate threads that crashed. Now it
uses platform-specific logic, which in the case of linux searches for eStopReasonSignaled with
signal=SIGSEGV.
I have also added the ability to set the description of StopInfoUnixSignal using the description
field of the gdb-remote packet. The linux stub uses this to display additional information about
the segfault (invalid address, address access protected, etc.).
Test Plan: All tests pass on linux and osx.
Reviewers: ovyalov, clayborg, emaste
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D10057
llvm-svn: 238549
Summary:
Previously, we wait()ed for events from the inferiors process group. This is resulted in a
failure if the inferior changed its process group in the middle of execution. To avoid this, I
pass -1 to the wait() call. The flag __WNOTHREAD makes sure we don't actually wait for events
from any process, but only the processes(threads) which are our children (or traced by us). Since
this happens on the monitor thread, which is dedicated to monitoring a single inferior, we will
be getting events only from this inferior.
Test Plan: All tests pass on linux. I have added a test to check the new functionality.
Reviewers: chaoren, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10061
llvm-svn: 238405
This change reorganize the register read/write code inside lldb-server on Linux
with moving the architecture independent code into a new class called
NativeRegisterContextLinux and all of the architecture dependent code into the
appropriate NativeRegisterContextLinux_* class. As part of it the compilation of
the architecture specific register contexts are only compiled on the specific
architecture because they can't be used in other cases.
The purpose of this change is to remove a lot of duplicated code from the different
register contexts and to remove the architecture dependent codes from the global
NativeProcessLinux class.
Differential revision: http://reviews.llvm.org/D9935
llvm-svn: 238196
Summary:
Previously, NPL tried to reinject SIGSTOP into the inferior in an attempt to get the process to
start in the group-stop state. This was:
a) wrong (reinjection should be controlled by "process handle" lldb setting)
b) racy (it should use Resume for transparent resuming instead of RequestResume)
c) broken (llgs crashed on inferior SIGSTOP)
With this change, SIGSTOP is handled just like any other signal delivered to the inferior: we
stop all threads and report signal reception to lldb. SIGSTOP reinjection does not behave the
same way as it would outside the debugger, but simulating this is a hard problem and is not
normally necessary.
Test Plan: I have added a test which verifies we get SIGSTOP reports and we do not crash.
Reviewers: ovyalov, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9852
llvm-svn: 237880
Summary:
There was an issue in NPL, where we attempted removal of temporary breakpoints (used to implement
software single stepping), while some threads of the process were running. This is a problem
since we currently always use the main thread's ID in the removal ptrace call. Therefore, if the
main thread was still running, the ptrace call would fail, and the software breakpoint would
remain, causing all kinds of problems. This change removes the breakpoints after all threads have
stopped. This fixes TestExitDuringStep on Android arm and can also potentially help in other
situations, as previously the breakpoint would not get removed if the thread stopped for another
reason.
Test Plan: TestExitDuringStep passes, other tests remain unchanged.
Reviewers: tberghammer
Subscribers: tberghammer, aemerson, lldb-commits
Differential Revision: http://reviews.llvm.org/D9792
llvm-svn: 237448
Summary:
This is the same issue as we had in D9145 for thread creation. Going through the full
ThreadDidStop/RequestResume cycle can cause a deferred notification to fire, which is not correct
when we are ignoring an event and resuming the thread. In this case it doesn't matter much since
the thread will die after that anyway, but for correctness, we should do the same thing here.
Also treating the SIGTRAP case the same way.
Test Plan: Tests continue to pass.
Reviewers: chaoren, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9696
llvm-svn: 237445
Removed some unused variables, added some consts, changed some casts
to const_cast. I don't think any of these changes are very
controversial.
Differential Revision: http://reviews.llvm.org/D9674
llvm-svn: 237218
The defult implementation falls back to GetRegisterCount what
includes the debug registers also what shouldn't be displayed to
the user.
llvm-svn: 237111
Summary:
NPL::Resume attempted to handle eStateStopped as a resume action. However:
- GDBRemoteCommunicationServerLLGS (the only user of NPL) never sets this action
- it could set this action in response to a vCont:t packet, but LLDB never produces this packet
- gdb-remote protocol documentation says vCont:t packet is used only in non-stop mode, but LLDB
does not support non-stop mode
- even if LLDB supported non-stop mode, this implementation of eStateStopped does something
different from what the spec says it should (according to spec, it should stop the specified
thread, but this seems to want to stop all threads).
Given the facts above, I believe we should remove this unused and untested code, as it probably
doesn't even work and removing it makes the rest of the code noticably simpler.
Reviewers: ovyalov, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9657
llvm-svn: 237103
Summary:
Since the former-TSC events are now processed synchronously, there is no need for to protect them
with a separate mutex - all the actions are now guarded by the big m_threads_mutex.
With the mutex gone, the following functions, no longer have any purpose and were removed:
NotifyThreadCreate: replaced by direct calls to ThreadWasCreated
NotifyThreadStop: replaced by direct calls to ThreadDidStop
NotifyThreadDeath: folded into StopTrackingThread
ResetForExec: inlined as it consisted of a single line of code
RequestThreadResume(AsNeeded): replaced by direct calls to ResumeThread
StopThreads: removed, as it was never called
Test Plan: tests continue to pass
Reviewers: ovyalov, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9603
llvm-svn: 237101
Summary:
Now that all thread events are processed synchronously, there is no need to have separate records
of whether a thread is running. This changes the (ever-dwindling) remains of the TSC to use
NativeThreadLinux as the authoritative source of the state of threads. The rest of the
ThreadContext we need has been moved to a member of NTL.
Test Plan: ninja check-lldb continues to pass
Reviewers: chaoren, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9562
llvm-svn: 236983
Summary:
The stop callback is a remnant of the ThreadStateCoordinator. We don't need it now that TSC is
gone, as we know exactly which function to call when threads stop. This also removes some
stop-related functions, which were just forwarding calls to one another.
Test Plan: ninja check-lldb continues to pass
Reviewers: chaoren, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9531
llvm-svn: 236814
Summary:
These are remnants of the thread state coordinator, which are now unnecessary. I have basically
inlined the callbacks. No functional change.
Test Plan: Tests continue to pass.
Reviewers: chaoren, vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9343
llvm-svn: 236707
Summary:
The lambda was always calling SetState(eStateStopped) with small variations, so I have inlined
the code. Given that we don't have the TSC anymore, I believe we don't need to be so generic.
The only major change here is the way we choose a stop reason thread when we're interrupting a
program on client request. Previously, we were setting a null stop reason for all threads and
then fixing up the reason for one victim thread in the lambda. Now, I make sure the stop reason
is set for the victim thread correctly in the first place.
I also take the opportunity to rename CallAfter* functions into something more appropriate.
Test Plan: All tests continue to pass.
Reviewers: chaoren, vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9321
llvm-svn: 236595
Summary:
Since all TSC operations are now executed synchronously, TSC has become a little more than a
messenger between different parts of NativeProcessLinux. Therefore, the reason for its existance
has disappeared.
This commit moves the contents of the TSC into the NPL class. This will enable us to remove all
the boilerplate code in NPL (as it stands now, this is most of the class), which I plan to do in
subsequent commits.
Unfortunately, this also means we will lose the unit tests for the TSC. However, since the size
of the TSC has diminished, the unit tests were not testing much at this point anyway, so it's not
a big loss.
No functional change.
Test Plan: All tests continue to pass.
Reviewers: vharron, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9296
llvm-svn: 236587
Summary:
This is a cleanup patch for thread state coordinator. After making processing of all events
synchronous, there is no need to have a a separate class for each event. I have moved back
processing of all events back into the TSC class. No functional change.
Test Plan: All tests continue to pass.
Reviewers: chaoren, vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9254
llvm-svn: 236576
Summary:
This change removes the thread state coordinator thread by making all the operations it was
performing synchronous. In order to prevent deadlock, NativeProcessLinux must now always call
m_monitor->DoOperation with the m_threads_mutex released. This is needed because HandleWait
callbacks lock the mutex (which means the monitor thread will block waiting on whoever holds the
lock). If the other thread now requests a monitor operation, it will wait for the monitor thread
do process it, creating a deadlock.
To preserve this invariant I have introduced two new Monitor commands: "begin operation block"
and "end operation block". They begin command blocks the monitor from processing waitpid
events until the corresponding end command, thereby assuring the monitor does not attempt to
acquire the mutex.
Test Plan: Run the test suite locally, verify no tests fail.
Reviewers: vharron, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9227
llvm-svn: 236501
Summary:
NativeProcessProtocol uses ReadMemory internally for setting/checking
breakpoints but also for generic memory reads (Handle_m), this change adds a
ReadMemoryWithoutTrap for that purpose. Also fixes a bunch of misuses of addr_t
as size/length.
Test Plan: `disassemble` no longer shows the trap code.
Reviewers: jingham, vharron, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9330
llvm-svn: 236132
Summary:
Without the synchronisation between the two thread creation events the following case could
happen:
- threads A and B are running. A hits a breakpoint. We note that we want to stop B.
- before we could stop it, B creates a new thread C, we get the stop notification for B, but we
don't record C's existence yet.
- we resume B
- before we get the C notification, B stops again (e.g. hits a breakpoint, gets our SIGSTOP,
etc.)
- we see all known threads have stopped, and we notify LLDB
- C notification comes, we note it's existence and resume it
=> we have an inconsistent state (LLDB thinks we've stopped, but C is running)
I resolve this by doing a blocking wait for for the C notification when we get the creation
notification on the parent (B) thread. This way the two events are synchronised, but we don't
need to introduce the intermediate "launching" state which would complicate handling of thread
states as all code would need to be aware of the third possible state.
Test Plan:
This is an obscure corner case, which I had not observed in practise, so I have no
test for it. I have tested that this commit does not regress in existing tests though.
Reviewers: chaoren, vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9217
llvm-svn: 235969
The previous read callback always read the value of the register what
caused problems when the emulator wrote some value into a register and
then expected to read the same value back. This CL add a register value
cache into the callbacks to return the correct value after a register
write also.
Test Plan: Stepping over BL/BLX instruction works on android-arm if the instruction set isn't change (other, unrelated patch will come for the case when we move to an other instruction set)
Reviewers: omjavaid, sas, clayborg
Reviewed By: clayborg
Subscribers: labath, tberghammer, rengolin, aemerson, lldb-commits
Differential Revision: http://reviews.llvm.org/D9187
From: Tamas Berghammer <tberghammer@google.com>
llvm-svn: 235852