Debugger.h is a huge file that gets included everywhere, and
FormatManager.h brings in a ton of unnecessary stuff and doesn't
even use anything from it in the header.
llvm-svn: 231161
both a user process dyld and for a kernel binary -- we
will decide which to prefer after one or both have been
located.
It would be faster to stop the search thorugh the core
segments one we've found a dyld/kernel binary - but that
may trick us into missing the one we would prefer.
<rdar://problem/19806413>
llvm-svn: 228910
This is currently controlled by a setting:
(lldb) settings set target.process.python-os-plugin-path <path>
Or clearing it with:
(lldb) settings clear target.process.python-os-plugin-path
The process will now reload the OperatingSystem plug-in.
This was implemented by:
- adding the ability to set a notify callback for when an option value is changed
- added the ability for the process plug-in to load the operating system plug-in on the fly
- fixed bugs in the Process::GetStatus() so all threads are displayed if their thread IDs are larger than 32 bits
- adding a callback in ProcessProperties to tell when the "python-os-plugin-path" is changed by the user
- fixing a crasher in ProcessMachCore that happens when updating the thread list when the OS plugin is reloaded
llvm-svn: 225831
creating the ModuleSpec to load the core file - we won't have a fat
core file and we can end up with cpu subtype mismatches if the core
file header isn't written out completely accurately. We need to
be a little loose in this particular case.
<rdar://problem/17843388>
llvm-svn: 216498
Fixes include:
1 - added new FileSpec method: bool FileSpec::Readable()
2 - detect when an executable is not readable and give an appropriate error for:
(lldb) file /tmp/unreadablefile
3 - detect when a core file is not readable and give an appropriate error
4 - detect when a specified core file doesn't exist and give an appropriate error
<rdar://problem/17727734>
llvm-svn: 215741
interpret core files that contain both a user
process dyld and a kernel executable in them.
Fix an additional method that needs to be
adjusted depending on this preference as well.
<rdar://problem/15721409>
llvm-svn: 197931
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
and a mach kernel in all the pages of the core file. If it finds
a user-process dyld binary, assume this is a user process that had
a copy of the mach kernel in memory when it crashed (e.g. lldb doing
kernel debugging) even though we found the kernel binary first.
Also, change the error messages about sections extending past the end
of the file to be warnings and make the messages sound less severe.
Most user process core files have one section that isn't included in
the file and there's no reason to worry people about that.
<rdar://problem/14473235>
llvm-svn: 190741
Fixed ProcessMachCore to be able to locate the main executeable in the core file even if it doesn't start at a core file address range boundary. Prior to this we only checked the first bytes of each range in the core file for mach_kernel or dyld. Now we still do this, but if we don't find the mach_kernel or dyld anywhere, we go through all core file ranges and check every 0x1000 to see if we can find dyld or the mach_kernel.
Now that we can properly detect the mach_kernel at any address, we don't need to call "DynamicLoaderDarwinKernel::SearchForDarwinKernel(Process*)" anymore.
llvm-svn: 182513
names when specifying the DynamicLoaderDarwinKernel.
ProcessGDBRemote wasn't setting the dyld string any more; remove
the remaining code tracking the dyld plugin name altogether from
that process plugin.
llvm-svn: 181658
Don't want about being unable to find a needed objective-c runtime
function when we're core file debugging and can't jit anything
anyway. Don't warn when quitting a debug session on a core file,
the program state can be reconstructed by re-running lldb on the
same core file again.
llvm-svn: 181653
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
namespace lldb_private {
class Thread
{
virtual lldb::StopInfoSP
GetPrivateStopReason() = 0;
};
}
To not be virtual. The lldb_private::Thread now handles the correct caching and will call a new pure virtual function:
namespace lldb_private {
class Thread
{
virtual bool
CalculateStopInfo() = 0;
}
}
This function must be overridden by thead lldb_private::Thread subclass and the only thing it needs to do is to set the Thread::StopInfo() with the current stop reason and return true, or return false if there is no stop reason. The lldb_private::Thread class will take care of calling this function only when it is required. This allows lldb_private::Thread subclasses to be a bit simpler and not all need to duplicate the cache and invalidation settings.
Also renamed:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopReason();
To:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopInfo();
Also cleaned up a case where the ThreadPlanStepOverBreakpoint might not re-set its breakpoint if the thread disappears (which was happening due to a bug when using the OperatingSystem plug-ins with memory threads and real threads).
llvm-svn: 181501
<rdar://problem/13723772>
Modified the lldb_private::Thread to work much better with the OperatingSystem plug-ins. Operating system plug-ins can now return have a "core" key/value pair in each thread dictionary for the OperatingSystemPython plug-ins which allows the core threads to be contained with memory threads. It also allows these memory threads to be stepped, resumed, and controlled just as if they were the actual backing threads themselves.
A few things are introduced:
- lldb_private::Thread now has a GetProtocolID() method which returns the thread protocol ID for a given thread. The protocol ID (Thread::GetProtocolID()) is usually the same as the thread id (Thread::GetID()), but it can differ when a memory thread has its own id, but is backed by an actual API thread.
- Cleaned up the Thread::WillResume() code to do the mandatory parts in Thread::ShouldResume(), and let the thread subclasses override the Thread::WillResume() which is now just a notification.
- Cleaned up ClearStackFrames() implementations so that fewer thread subclasses needed to override them
- Changed the POSIXThread class a bit since it overrode Thread::WillResume(). It is doing the wrong thing by calling "Thread::SetResumeState()" on its own, this shouldn't be done by thread subclasses, but the current code might rely on it so I left it in with a TODO comment with an explanation.
llvm-svn: 180886
Made some fixes to the OperatingSystemPython class:
- If any thread dictionary contains any "core=N" key/value pairs then the threads obtained from the lldb_private::Process itself will be placed inside the ThreadMemory threads and will be used to get the information for a thread.
- Cleaned up all the places where a thread inside a thread was causing problems
llvm-svn: 179405
DWARF with .o files now uses 40-60% less memory!
Big fixes include:
- Change line table internal representation to contain "file addresses". Since each line table is owned by a compile unit that is owned by a module, it makes address translation into lldb_private::Address easy to do when needed.
- Removed linked address members/methods from lldb_private::Section and lldb_private::Address
- lldb_private::LineTable can now relink itself using a FileRangeMap to make it easier to re-link line tables in the future
- Added ObjectFile::ClearSymtab() so that we can get rid of the object file symbol tables after we parse them once since they are not needed and kept memory allocated for no reason
- Moved the m_sections_ap (std::auto_ptr to section list) and m_symtab_ap (std::auto_ptr to the lldb_private::Symtab) out of each of the ObjectFile subclasses and put it into lldb_private::ObjectFile.
- Changed how the debug map is parsed and stored to be able to:
- Lazily parse the debug map for each object file
- not require the address map for a .o file until debug information is linked for a .o file
llvm-svn: 176454
in a core file if it didn't start at the beginning of a memory segment.
I added more sophisticated kernel location code to DynamicLoaderDarwinKernel
and removed the simple one in ProcessMachCore. Unfortunately the kernel
DynamicLoader doesn't get a chance to search around in memory unless there's
a hint that this might be a kernel debug session. It was easy ot make the
kernel location code static in DynamicLoaderDarwinKernel and call it from
ProcessMachCore on the start of the session, so that's what I did.
<rdar://problem/13326647>
llvm-svn: 176405
- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795
Enhance lldb so it can search for a kernel in memory when attaching
to a remote system. Remove some of the code that was doing this
from ProcessMachCore and ProcessGDBRemote and put it in
DynamicLoaderDarwinKernel.
I've added a new setting, plugin.dynamic-loader.darwin-kernel.scan-type
which can be set to
none - for environments where reading random memory can cause a
device crash
basic - look at one fixed location in memory for a kernel load address,
plus the contents of that address
fast-scan - the default, tries "basic" and then looks for the kernel's
mach header near the current pc value when lldb connects
exhaustive-scan - on 32-bit targets, step through the entire range where
the kernel can be loaded, looking for the kernel binary
I don't have the setting set up correctly right now, I'm getting back unexpected
values from the Property system, but I'll figure that out tomorrow and fix.
Besides that, all of the different communication methods / types of kernels
appear to be working correctly with these changes.
llvm-svn: 173891
Then make the Thread a Broadcaster, and get it to broadcast when the selected frame is changed (but only from the Command Line) and when Thread::ReturnFromFrame
changes the stack.
Made the Driver use this notification to print the new thread status rather than doing it in the command.
Fixed a few places where people were setting their broadcaster class by hand rather than using the static broadcaster class call.
<rdar://problem/12383087>
llvm-svn: 165640
whether we try to call an external program to load symbols unconditionally,
or if we check the user's preferences before calling it.
ProcessMachCore now sets CanJIT to false - we can't execute code in a core file.
DynamicLoaderDarwinKernel::OSKextLoadedKextSummary::LoadImageUsingMemoryModule changed
to load the kernel from an on-disk file if at all possible.
Don't load the kext binaries out of memory from the remote systems - their linkedit doesn't
seem to be in a good state and we'll error out down in SymbolVendorMacOSX if we try to use
the in-memory images.
Call Symbols::DownloadObjectAndSymbolFile to get the kext/kernel binary -- the external
program may be able to give us a file path on the local filesystem instead of reading
the binary / dSYM over a network drive every time. Fall back to calling
Target::GetSharedModule() like before if DownloadObjectAndSymbolFile fails.
llvm-svn: 165471
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
The current ProcessGDBRemote function that updates the threads could end up with an empty list if any other thread had the sequence mutex. We now don't clear the thread list when we can't access it, and we also have changed how lldb_private::Process handles the return code from the:
virtual bool
Process::UpdateThreadList (lldb_private::ThreadList &old_thread_list,
lldb_private::ThreadList &new_thread_list) = 0;
A bool is now returned to indicate if the list was actually updated or not and the lldb_private::Process class will only update the stop ID of the validity of the thread list if "true" is returned.
The ProcessGDBRemote also got an extra assertion that will hopefully assert when running debug builds so we can find the source of this issue.
llvm-svn: 154365
more of the local path, platform path, associated symbol file, UUID, arch,
object name and object offset. This allows many of the calls that were
GetSharedModule to reduce the number of arguments that were used in a call
to these functions. It also allows a module to be created with a ModuleSpec
which allows many things to be specified prior to any accessors being called
on the Module class itself.
I was running into problems when adding support for "target symbol add"
where you can specify a stand alone debug info file after debugging has started
where I needed to specify the associated symbol file path and if I waited until
after construction, the wrong symbol file had already been located. By using
the ModuleSpec it allows us to construct a module with as little or as much
information as needed and not have to change the parameter list.
llvm-svn: 151476
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
Tracking modules down when you have a UUID and a path has been improved.
DynamicLoaderDarwinKernel no longer parses mach-o load commands and it
now uses the memory based modules now that we can load modules from memory.
Added a target setting named "target.exec-search-paths" which can be used
to supply a list of directories to use when trying to look for executables.
This allows one or more directories to be used when searching for modules
that may not exist in the SDK/PDK. The target automatically adds the directory
for the main executable to this list so this should help us in tracking down
shared libraries and other binaries.
llvm-svn: 150426
user space programs. The core file support is implemented by making a process
plug-in that will dress up the threads and stack frames by using the core file
memory.
Added many default implementations for the lldb_private::Process functions so
that plug-ins like the ProcessMachCore don't need to override many many
functions only to have to return an error.
Added new virtual functions to the ObjectFile class for extracting the frozen
thread states that might be stored in object files. The default implementations
return no thread information, but any platforms that support core files that
contain frozen thread states (like mach-o) can make a module using the core
file and then extract the information. The object files can enumerate the
threads and also provide the register state for each thread. Since each object
file knows how the thread registers are stored, they are responsible for
creating a suitable register context that can be used by the core file threads.
Changed the process CreateInstace callbacks to return a shared pointer and
to also take an "const FileSpec *core_file" parameter to allow for core file
support. This will also allow for lldb_private::Process subclasses to be made
that could load crash logs. This should be possible on darwin where the crash
logs contain all of the stack frames for all of the threads, yet the crash
logs only contain the registers for the crashed thrad. It should also allow
some variables to be viewed for the thread that crashed.
llvm-svn: 150154