`-flto -gsplit-dwarf -g -O[123]` may create .debug_gnu_pubnames with 0 DIE
offset entries. llvm-dwarfdump -debug-gnu-pubnames/ld.lld --gdb-index errors for that.
```
.section .debug_gnu_pubnames,"",@progbits
.long .LpubNames_end2-.LpubNames_begin2 # Length of Public Names Info
.LpubNames_begin2:
.short 2 # DWARF Version
.long .Lcu_begin2 # Offset of Compilation Unit Info
.long 57 # Compilation Unit Length
.long 0 # DIE offset
.byte 16 # Attributes: TYPE, EXTERNAL
.asciz "absl" # External Name
.long 0 # DIE offset
.byte 16 # Attributes: TYPE, EXTERNAL
.asciz "absl::base_internal" # External Name
.long 0 # End Mark
```
The upstream callers (the vectorizers) were fixed with:
bbed5f2f8a ( D95690 )
77adbe6a8c
We should remove this pass entirely now that reduction
legalization/lowering is expected to work just as well,
but we need to confirm that the shuffle ops do not
regress (for x86 in particular).
This should be the last step needed to close:
https://llvm.org/PR23116
This modified patch avoids redirecting the unit in which a subprogram is
created if type units are enabled -- DIEs were getting children allocated
from different units memory pools. Original commit message:
[DWARF] Create subprogram's DIE in DISubprogram's unit
This is a fix for PR48790. Over in D70350, subprogram DIEs were permitted
to be shared between CUs. However, the creation of a subprogram DIE can be
triggered early, from other CUs. The subprogram definition is then created
in one CU, and when the function is actually emitted children are attached
to the subprogram that expect to be in another CU. This breaks internal CU
references in the children.
Fix this by redirecting the creation of subprogram DIEs in
getOrCreateContextDIE to the CU specified by it's DISubprogram definition.
This ensures that the subprogram DIE is always created in the correct CU.
Differential Revision: https://reviews.llvm.org/D94976
These two cases have identical implementations other than an
unreachable part of `G_ADD` that checks if the scalar we're narrowing
is a vector. Combining them to avoid unnecessary divergence.
This was only adding undef to the use if the copy itself had a
subregister index. It did not consider the subrange liveness if the
use had a subreg index to begin with.
If we had a pair of copies inside a loop which introduced new liveness
to a subregister which was undef before the loop, we would have a
dummy phi-only segment remaining across the loop body. Later, this
false segment would confuse RenameIndependentSubregs causing it to
introduce IMPLICIT_DEFs with broken value numbering.
It seems always adding the lanes to ShrinkMask is OK, so any
conditions should be purely a compile time filter.
If sext_inreg is supported, we will turn this into sext_inreg. That
will then remove it if there are enough sign bits. But if sext_inreg
isn't supported, we can still remove the shift pair based on sign
bits.
Split from D95890.
Discussed in this thread:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/148139.html
DwarfDebug::collectEntityInfo accidentally distinguishes between variable
locations that never have a location specified, and variable locations that
have an empty location specified. The latter leads to the creation of an
empty variable referring to the abstract origin.
Fix this by seeking a non-empty location before producing a concrete
entity, to guarantee a DW_AT_location will be produced. Other loops in
collectEntityInfo and endFunctionImpl take care of examining the
retainedNodes collection and ensuring optimised-out variables are created.
Differential Revision: https://reviews.llvm.org/D95617
FixupStatepoints pass does not take into account the undef use
it skips may have a tied def. So when defs are handled pass
considers that tied-use should be spilled and triggers an assert.
FixupStatepoints should skip undef def as well.
Reviewers: reames, dantrushin
Reviewed By: dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D95858
If the G_BR + G_BRCOND in this combine use the same MBB, then it will infinite
loop. Don't allow that to happen.
Differential Revision: https://reviews.llvm.org/D95895
When replacing the dst reg with the src reg, we need to make sure that we
propagate the dst reg's register class through to the src.
Otherwise, we aren't meeting the requirements for G_ASSERT_ZEXT, and so the
verifier will fail.
Differential Revision: https://reviews.llvm.org/D95708
The AArch64 DAG combine added by D90945 & D91433 extends the index
of a scalable masked gather or scatter to i32 if necessary.
This patch removes the combine and instead adds shouldExtendGSIndex, which
is used by visitMaskedGather/Scatter in SelectionDAGBuilder to query whether
the index should be extended before calling getMaskedGather/Scatter.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D94525
To set non-default rounding mode user usually calls function 'fesetround'
from standard C library. This way has some disadvantages.
* It creates unnecessary dependency on libc. On the other hand, setting
rounding mode requires few instructions and could be made by compiler.
Sometimes standard C library even is not available, like in the case of
GPU or AI cores that execute small kernels.
* Compiler could generate more effective code if it knows that a particular
call just sets rounding mode.
This change introduces new IR intrinsic, namely 'llvm.set.rounding', which
sets current rounding mode, similar to 'fesetround'. It however differs
from the latter, because it is a lower level facility:
* 'llvm.set.rounding' does not return any value, whereas 'fesetround'
returns non-zero value in the case of failure. In glibc 'fesetround'
reports failure if its argument is invalid or unsupported or if floating
point operations are unavailable on the hardware. Compiler usually knows
what core it generates code for and it can validate arguments in many
cases.
* Rounding mode is specified in 'fesetround' using constants like
'FE_TONEAREST', which are target dependent. It is inconvenient to work
with such constants at IR level.
C standard provides a target-independent way to specify rounding mode, it
is used in FLT_ROUNDS, however it does not define standard way to set
rounding mode using this encoding.
This change implements only IR intrinsic. Lowering it to machine code is
target-specific and will be implemented latter. Mapping of 'fesetround'
to 'llvm.set.rounding' is also not implemented here.
Differential Revision: https://reviews.llvm.org/D74729
If we're going to end up expanding anyway, we should do it early
so we don't create extra operations to handle the bytes added by
promotion.
This is helfpul on RISCV where we might have to promote i16 all
the way to i64.
Differential Revision: https://reviews.llvm.org/D95756
With a context instruction, this would produce a context
error. However, it would continue on and do an out of bounds access of
the empty allocation order array.
Source Drift happens when the sources are updated after profiling the binary
but before building the final optimized binary. If the source has changed since
the profiles were obtained, optimizing basic blocks might be sub-optimal. This
only applies to BasicBlockSection::List as it creates clusters of basic blocks
using basic block ids. Source drift can invalidate these groupings leading to
sub-optimal code generation with regards to performance.
PGO source drift for a particular function can be detected using function
metadata added in D95495.
When source drift is deected, disable basic block clusters by default
which can be re-enabled with -mllvm option
bbsections-detect-source-drift=false.
Differential Revision: https://reviews.llvm.org/D95593
I think every target will want to remove these in the same way. Rather than
making them all implement the same code, let's just put this in
InstructionSelect.
Differential Revision: https://reviews.llvm.org/D95652
Remove the call to setFlags in favour of creating the instruction with
the correct flags in the first place, so we don't have to explicitly
notify the observer.
Differential Revision: https://reviews.llvm.org/D95681
splitCodeGen does not need to take ownership of the module, as it
currently clones the original module for each split operation.
There is an ~4 year old fixme to change that, but until this is
addressed, the function can just take a reference to the module.
This makes the transition of LTOCodeGenerator to use LTOBackend a bit
easier, because under some circumstances, LTOCodeGenerator needs to
write the original module back after codegen.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D95222
iterating the same PHI/LABEL/Debug instructions repeatedly.
We run into a compiling timeout problem when building a target after its
SampleFDO profile is updated. It is because some very large blocks with
a bunch of PHIs at the beginning. LiveDebugVariables::emitDebugValues
called during VirtRegRewriter phase searchs the insertion point for those
large BBs repeatedly in SkipPHIsLabelsAndDebug, and each time
SkipPHIsLabelsAndDebug needs to go through the same set of PHIs before it
can find the first non PHI/Label/Debug instruction. This patch adds a cache
to save the last position for the sequence which has been checked in the
previous call of SkipPHIsLabelsAndDebug.
Differential Revision: https://reviews.llvm.org/D94981
This patch allows targets to define multiple cost
values for each register so that the cost model
can be more flexible and better used during the
register allocation as per the target requirements.
For AMDGPU the VGPR allocation will be more efficient
if the register cost can be associated dynamically
based on the calling convention.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D86836
This adds generic regbankselect support for G_ASSERT_ZEXT.
It inherits whatever register bank the source was given, always, on all targets.
I think that at the point where we run into these, the source register bank
should be decided.
This also adds some AArch64-specific code which makes sure we can handle
G_ASSERT_ZEXT when deciding on register banks for G_STORE, G_PHI, ... etc.
Differential Revision: https://reviews.llvm.org/D95649
It's the same as the ZEXT/TRUNC case, except SrcBitWidth is given by the
immediate operand.
Update KnownBitsTest.cpp and a MIR test for a concrete example.
Differential Revision: https://reviews.llvm.org/D95566
Treat hint instructions like G_ASSERT_ZEXT like COPY instructions in helpers
which walk through copies.
This ensures that instructions like G_ASSERT_ZEXT won't impact any optimizations
that rely on these helpers.
Differential Revision: https://reviews.llvm.org/D95577
These are widened to a wider UADDE/USUBE, with the overflow value
unused, and with the same synthesis of a new overflow value as for the
O operations.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95326
This adds a generic opcode which communicates that a type has already been
zero-extended from a narrower type.
This is intended to be similar to AssertZext in SelectionDAG.
For example,
```
%x_was_extended:_(s64) = G_ASSERT_ZEXT %x, 16
```
Signifies that the top 48 bits of %x are known to be 0.
This is useful in cases like this:
```
define i1 @zeroext_param(i8 zeroext %x) {
%cmp = icmp ult i8 %x, -20
ret i1 %cmp
}
```
In AArch64, `%x` must use a 32-bit register, which is then truncated to a 8-bit
value.
If we know that `%x` is already zero-ed out in the relevant high bits, we can
avoid the truncate.
Currently, in GISel, this looks like this:
```
_zeroext_param:
and w8, w0, #0xff ; We don't actually need this!
cmp w8, #236
cset w0, lo
ret
```
While SDAG does not produce the truncation, since it knows that it's
unnecessary:
```
_zeroext_param:
cmp w0, #236
cset w0, lo
ret
```
This patch
- Adds G_ASSERT_ZEXT
- Adds MIRBuilder support for it
- Adds MachineVerifier support for it
- Documents it
It also puts G_ASSERT_ZEXT into its own class of "hint instruction." (There
should be a G_ASSERT_SEXT in the future, maybe a G_ASSERT_ALIGN as well.)
This allows us to skip over hints in the legalizer etc. These can then later
be selected like COPY instructions or removed.
Differential Revision: https://reviews.llvm.org/D95564
This reverts commit ef0dcb5063.
This change is causing a lot of compiler crashes inside, sorry I don't have a
small repro/stacktrace with symbols to share right now.
Differential Revision: https://reviews.llvm.org/D95622
https://bugs.llvm.org/show_bug.cgi?id=48232
When PrologEpilogInserter writes callee-saved registers to the stack, LR is not reloaded but is instead loaded directly into PC.
This was not taken into account when determining if each callee-saved register was liveout for the block.
When frame elimination inserts virtual registers, and the register scavenger tries to scavenge LR, it considers it liveout and tries to spill again.
However there is no emergency spill slot to use, and it fails with an error:
fatal error: error in backend: Error while trying to spill LR from class GPR: Cannot scavenge register without an emergency spill slot!
This patch pervents any callee-saved registers which are not reloaded (including LR) from being marked liveout.
They are therefore available to scavenge without requiring an extra spill.