Without `-dwarf-version`, llvm-mc uses the default `MCContext::DwarfVersion` 4.
Without `-gdwarf-N`, Clang cc1as uses `clang::driver::ToolChain::GetDefaultDwarfVersion`
which is 4 on many toolchains. Note: `clang -c` can synthesize .debug_info without -g.
There is currently a MCParser warning upon `.file 0` and MCParser errors upon
`.loc 0` if the DWARF version is less than 5. This causes friction to the
following usage:
```
clang -S -g -gdwarf-5 a.c
// MC warning due to .file 0, MC error due to .loc 0
clang -c a.s
llvm-mc -filetype=obj a.s
```
My idea is that we can just upgrade `MCContext::DwarfVersion` to 5 upon
`.file 0` to make the above commands work.
The downside is that for an explicit version `clang -c -gdwarf-4 a.s`, it can be
argued that the new behavior drops the probably intended diagnostic. I think the
downside is small because in most cases DWARF version for an assembly action
should either match the original compile action or be omitted.
Ongoing discussion taking a similar action for GNU as: https://sourceware.org/pipermail/binutils/2021-January/114980.html
Differential Revision: https://reviews.llvm.org/D94882
On Linux target triples, GNU as sets EI_OSABI to ELFOSABI_GNU when SHF_GNU_RETAIN is used。
On `*-*-freebsd`, it usually sets EI_OSABI to ELFOSABI_FREEBSD.
GNU ld respects SHF_GNU_RETAIN only for ELFOSABI_FREEBSD/ELFOSABI_GNU.
https://sourceware.org/bugzilla/show_bug.cgi?id=27282
MC doesn't set ELFOSABI_GNU for SHF_GNU_RETAIN/STB_GNU_UNIQUE/STT_GNU_IFUNC.
MC assembled object files do not have special semantics in GNU ld.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D95730
Followup to D92052 as I missed an issue as shown via GCC bug https://gcc.gnu.org/PR97827, namely: (e.g.) ".rodata." implies ELF::SHF_ALLOC.
Crossref:
- D73999 / commit 75af9da755
added for LLVM 11 a check that sh_flags and sh_entsize (and sh_type)
changes are an error, in line with GNU assembler.
- D92052 / commit 1deff4009e
permitted the abbreviated form which many assemblers accept and
GCC generates: while the first .section contains the flags and entsize,
subsequent sections simply contain the name without repeating entsize or
flags.
However, the latter patch missed in the check that some flags are automatically set, e.g. '.rodata." implies ELF::SHF_ALLOC.
Related https://bugs.llvm.org/show_bug.cgi?id=48201
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D94072
Currently the integrated assembler only allows commas as the separator
between string arguments in .ascii. This patch adds support to using
space as separators and make IAS consistent with GNU assembler.
Link: https://github.com/ClangBuiltLinux/linux/issues/1196
Reviewed By: nickdesaulniers, jrtc27
Differential Revision: https://reviews.llvm.org/D91460
This is consistent with the resolution to power-of-2 alignments.
Otherwise, emitCodeAlignment and emitValueToAlignment cannot handle alignments
larger than 2**32 and will trigger assertion failure (PR35218).
Note: GNU as as of 2.35 will use 1 for such a large byte `.align`
D73999 / commit 75af9da755
added for LLVM 11 a check that sh_flags and sh_entsize (and sh_type)
changes are an error, in line with GNU assembler.
However, GNU assembler accepts and GCC generates an abbreviated form:
while the first .section contains the flags and entsize, subsequent
sections simply contain the name without repeating entsize or flags.
Do likewise for better compatibility.
See https://bugs.llvm.org/show_bug.cgi?id=48201
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D92052
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s
Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead.
**ELF object emission**
The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.
Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.
The format of `.pseudo_probe_desc` section looks like:
```
.section .pseudo_probe_desc,"",@progbits
.quad 6309742469962978389 // Func GUID
.quad 4294967295 // Func Hash
.byte 9 // Length of func name
.ascii "_Z5funcAi" // Func name
.quad 7102633082150537521
.quad 138828622701
.byte 12
.ascii "_Z8funcLeafi"
.quad 446061515086924981
.quad 4294967295
.byte 9
.ascii "_Z5funcBi"
.quad -2016976694713209516
.quad 72617220756
.byte 7
.ascii "_Z3fibi"
```
For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :
```
FUNCTION BODY (one for each outlined function present in the text section)
GUID (uint64)
GUID of the function
NPROBES (ULEB128)
Number of probes originating from this function.
NUM_INLINED_FUNCTIONS (ULEB128)
Number of callees inlined into this function, aka number of
first-level inlinees
PROBE RECORDS
A list of NPROBES entries. Each entry contains:
INDEX (ULEB128)
TYPE (uint4)
0 - block probe, 1 - indirect call, 2 - direct call
ATTRIBUTE (uint3)
reserved
ADDRESS_TYPE (uint1)
0 - code address, 1 - address delta
CODE_ADDRESS (uint64 or ULEB128)
code address or address delta, depending on ADDRESS_TYPE
INLINED FUNCTION RECORDS
A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
callees. Each record contains:
INLINE SITE
GUID of the inlinee (uint64)
ID of the callsite probe (ULEB128)
FUNCTION BODY
A FUNCTION BODY entry describing the inlined function.
```
To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.
**Assembling**
Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.
A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.
A example assembly looks like:
```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```
With inlining turned on, the assembly may look different around %bb2 with an inlined probe:
```
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 3 0
.pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe 837061429793323041 4 0
popq %rax
retq
```
**Disassembling**
We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.
An example disassembly looks like:
```
00000000002011a0 <foo2>:
2011a0: 50 push rax
2011a1: 85 ff test edi,edi
[Probe]: FUNC: foo2 Index: 1 Type: Block
2011a3: 74 02 je 2011a7 <foo2+0x7>
[Probe]: FUNC: foo2 Index: 3 Type: Block
[Probe]: FUNC: foo2 Index: 4 Type: Block
[Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6
2011a5: 58 pop rax
2011a6: c3 ret
[Probe]: FUNC: foo2 Index: 2 Type: Block
2011a7: bf 01 00 00 00 mov edi,0x1
[Probe]: FUNC: foo2 Index: 5 Type: IndirectCall
2011ac: ff d6 call rsi
[Probe]: FUNC: foo2 Index: 4 Type: Block
2011ae: 58 pop rax
2011af: c3 ret
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91878
This CL changes the asm syntax for section flags, making them more like ELF
(previously "passive" was the only option). Now we also allow "G" to designate
COMDAT group sections. In these sections we set the appropriate comdat flag on
function symbols, and also avoid auto-creating a new section for them.
This also adds asm-based tests for the changes D92691 to go along with
the direct-to-object tests.
Differential Revision: https://reviews.llvm.org/D92952
This is a reland of rG4564553b8d8a with a fix to the lit pipeline in
llvm/test/MC/WebAssembly/comdat.ll
This CL changes the asm syntax for section flags, making them more like ELF
(previously "passive" was the only option). Now we also allow "G" to designate
COMDAT group sections. In these sections we set the appropriate comdat flag on
function symbols, and also avoid auto-creating a new section for them.
This also adds asm-based tests for the changes D92691 to go along with
the direct-to-object tests.
Differential Revision: https://reviews.llvm.org/D92952
This change implements pseudo probe encoding and emission for CSSPGO. Please see RFC here for more context: https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s
Pseudo probes are in the form of intrinsic calls on IR/MIR but they do not turn into any machine instructions. Instead they are emitted into the binary as a piece of data in standalone sections. The probe-specific sections are not needed to be loaded into memory at execution time, thus they do not incur a runtime overhead.
**ELF object emission**
The binary data to emit are organized as two ELF sections, i.e, the `.pseudo_probe_desc` section and the `.pseudo_probe` section. The `.pseudo_probe_desc` section stores a function descriptor for each function and the `.pseudo_probe` section stores the actual probes, each fo which corresponds to an IR basic block or an IR function callsite. A function descriptor is stored as a module-level metadata during the compilation and is serialized into the object file during object emission.
Both the probe descriptors and pseudo probes can be emitted into a separate ELF section per function to leverage the linker for deduplication. A `.pseudo_probe` section shares the same COMDAT group with the function code so that when the function is dead, the probes are dead and disposed too. On the contrary, a `.pseudo_probe_desc` section has its own COMDAT group. This is because even if a function is dead, its probes may be inlined into other functions and its descriptor is still needed by the profile generation tool.
The format of `.pseudo_probe_desc` section looks like:
```
.section .pseudo_probe_desc,"",@progbits
.quad 6309742469962978389 // Func GUID
.quad 4294967295 // Func Hash
.byte 9 // Length of func name
.ascii "_Z5funcAi" // Func name
.quad 7102633082150537521
.quad 138828622701
.byte 12
.ascii "_Z8funcLeafi"
.quad 446061515086924981
.quad 4294967295
.byte 9
.ascii "_Z5funcBi"
.quad -2016976694713209516
.quad 72617220756
.byte 7
.ascii "_Z3fibi"
```
For each `.pseudoprobe` section, the encoded binary data consists of a single function record corresponding to an outlined function (i.e, a function with a code entry in the `.text` section). A function record has the following format :
```
FUNCTION BODY (one for each outlined function present in the text section)
GUID (uint64)
GUID of the function
NPROBES (ULEB128)
Number of probes originating from this function.
NUM_INLINED_FUNCTIONS (ULEB128)
Number of callees inlined into this function, aka number of
first-level inlinees
PROBE RECORDS
A list of NPROBES entries. Each entry contains:
INDEX (ULEB128)
TYPE (uint4)
0 - block probe, 1 - indirect call, 2 - direct call
ATTRIBUTE (uint3)
reserved
ADDRESS_TYPE (uint1)
0 - code address, 1 - address delta
CODE_ADDRESS (uint64 or ULEB128)
code address or address delta, depending on ADDRESS_TYPE
INLINED FUNCTION RECORDS
A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
callees. Each record contains:
INLINE SITE
GUID of the inlinee (uint64)
ID of the callsite probe (ULEB128)
FUNCTION BODY
A FUNCTION BODY entry describing the inlined function.
```
To support building a context-sensitive profile, probes from inlinees are grouped by their inline contexts. An inline context is logically a call path through which a callee function lands in a caller function. The probe emitter builds an inline tree based on the debug metadata for each outlined function in the form of a trie tree. A tree root is the outlined function. Each tree edge stands for a callsite where inlining happens. Pseudo probes originating from an inlinee function are stored in a tree node and the tree path starting from the root all the way down to the tree node is the inline context of the probes. The emission happens on the whole tree top-down recursively. Probes of a tree node will be emitted altogether with their direct parent edge. Since a pseudo probe corresponds to a real code address, for size savings, the address is encoded as a delta from the previous probe except for the first probe. Variant-sized integer encoding, aka LEB128, is used for address delta and probe index.
**Assembling**
Pseudo probes can be printed as assembly directives alternatively. This allows for good assembly code readability and also provides a view of how optimizations and pseudo probes affect each other, especially helpful for diff time assembly analysis.
A pseudo probe directive has the following operands in order: function GUID, probe index, probe type, probe attributes and inline context. The directive is generated by the compiler and can be parsed by the assembler to form an encoded `.pseudoprobe` section in the object file.
A example assembly looks like:
```
foo2: # @foo2
# %bb.0: # %bb0
pushq %rax
testl %edi, %edi
.pseudoprobe 837061429793323041 1 0 0
je .LBB1_1
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 6 2 0
callq foo
.pseudoprobe 837061429793323041 3 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
.LBB1_1: # %bb1
.pseudoprobe 837061429793323041 5 1 0
callq *%rsi
.pseudoprobe 837061429793323041 2 0 0
.pseudoprobe 837061429793323041 4 0 0
popq %rax
retq
# -- End function
.section .pseudo_probe_desc,"",@progbits
.quad 6699318081062747564
.quad 72617220756
.byte 3
.ascii "foo"
.quad 837061429793323041
.quad 281547593931412
.byte 4
.ascii "foo2"
```
With inlining turned on, the assembly may look different around %bb2 with an inlined probe:
```
# %bb.2: # %bb2
.pseudoprobe 837061429793323041 3 0
.pseudoprobe 6699318081062747564 1 0 @ 837061429793323041:6
.pseudoprobe 837061429793323041 4 0
popq %rax
retq
```
**Disassembling**
We have a disassembling tool (llvm-profgen) that can display disassembly alongside with pseudo probes. So far it only supports ELF executable file.
An example disassembly looks like:
```
00000000002011a0 <foo2>:
2011a0: 50 push rax
2011a1: 85 ff test edi,edi
[Probe]: FUNC: foo2 Index: 1 Type: Block
2011a3: 74 02 je 2011a7 <foo2+0x7>
[Probe]: FUNC: foo2 Index: 3 Type: Block
[Probe]: FUNC: foo2 Index: 4 Type: Block
[Probe]: FUNC: foo Index: 1 Type: Block Inlined: @ foo2:6
2011a5: 58 pop rax
2011a6: c3 ret
[Probe]: FUNC: foo2 Index: 2 Type: Block
2011a7: bf 01 00 00 00 mov edi,0x1
[Probe]: FUNC: foo2 Index: 5 Type: IndirectCall
2011ac: ff d6 call rsi
[Probe]: FUNC: foo2 Index: 4 Type: Block
2011ae: 58 pop rax
2011af: c3 ret
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91878
There is an explicit option for the lexer to support this, but we crash
when `-preserve-comments` is enabled because it checks for
`getTok().getString().empty()` to detect the case. This doesn't
work currently because the lexer reports this case as a string of length
1, containing a null byte.
Change the lexer to instead report this case via an empty string, as the
null terminator isn't logically a part of the textual input, and the
check for `.empty()` seems natural and obvious in the calling code.
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D92681
Notes:
* llvm::createAsmStreamer: it has been moved to TargetRegistry.h
* (anon ns)::WasmObjectWriter::updateCustomSectionRelocations: remnant of D46335
* COFFAsmParser::ParseSEHRegisterNumber: remnant of D66625
* llvm::CodeViewContext::isValidCVFileNumber: accidentally added by r279847
Previously these directives were always interpreted as having an extra
blank line after them.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D92612
If prefaced with a %, expand text macros and macro functions in any statement.
Also, prevent expanding text macros in the message of an ECHO directive unless expanded explicitly by the statement expansion operator.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89740
In text-item contexts, %expr expands to a string containing the results of evaluating `expr`.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89736
Accept macro function definitions, and apply them when invoked in operand position.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89734
2c196bbc6b asserted that
`SmallVector::push_back` doesn't invalidate the parameter when it needs
to grow. Do the same for `resize`, `append`, `assign`, `insert`, and
`emplace_back`.
Differential Revision: https://reviews.llvm.org/D91744
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
I was trying to add .cfi_ annotations to assembly code in the FreeBSD
kernel and changed a macro that then resulted in incorrectly nested
directives. However, clang's diagnostics said the error was happening at
<unknown>:0. This addresses one of the TODOs added in D51695.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D89787
Support MASM's REPEAT, FOR, FORC, and WHILE macro-like directives.
Also adds support for macro argument substitution inside quoted strings, and additional testing for macro directives.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89732
MASM interprets strings in expression contexts as integers expressed in big-endian base-256, treating each character as its ASCII representation.
This completely eliminates the need to special-case single-character strings.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D90788
Allow single-quoted strings and double-quoted character values, as well as doubled-quote escaping.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89731
Allows the MACRO directive to define macro procedures with parameters and macro-local symbols.
Supports required and optional parameters (including default values), and matches ml64.exe for its macro-local symbol handling (up to 65536 macro-local symbols in any translation unit).
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D89729
A SMLoc allows MCStreamer to report location-aware diagnostics, which
were previously done by adding SMLoc to various methods (e.g. emit*) in an ad-hoc way.
Since the file:line is most important, the column is less important and
the start token location suffices in many cases, this patch reverts
b7e7131af2
```
// old
symbol-binding-changed.s:6:8: error: local changed binding to STB_GLOBAL
.globl local
^
// new
symbol-binding-changed.s:6:1: error: local changed binding to STB_GLOBAL
.globl local
^
```
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D90511
This patch lets the bb_addr_map (renamed to __llvm_bb_addr_map) section use a special section type (SHT_LLVM_BB_ADDR_MAP) instead of SHT_PROGBITS. This would help parsers, dumpers and other tools to use the sh_type ELF field to identify this section rather than relying on string comparison on the section name.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D88199
MASM allows arbitrary whitespace around the Intel dot operator, especially when used for struct field lookup
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D88450
Support the "alias" directive.
Required support for emitWeakReference in MCWinCOFFStreamer.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D87403
Add support for .radix directive, and radix specifiers [yY] (binary), [oOqQ] (octal), and [tT] (decimal).
Also, when lexing MASM integers, require radix specifier; MASM requires that all literals without a radix specifier be treated as in the default radix. (e.g., 0100 = 100)
Relanding D87400, now with fewer ms-inline-asm tests broken!
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D88337
Add support for .radix directive, and radix specifiers [yY] (binary), [oOqQ] (octal), and [tT] (decimal).
Also, when lexing MASM integers, require radix specifier; MASM requires that all literals without a radix specifier be treated as in the default radix. (e.g., 0100 = 100)
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D87400