During instruction selection, there is an inconsistency in choosing
the initial soffset value. With certain early passes, this value is
getting modified and that brought additional fixup during
eliminateFrameIndex to work for all cases. This whole transformation
looks trivial and can be handled better.
This patch clearly defines the initial value for soffset and keeps it
unchanged before eliminateFrameIndex. The initial value must be zero
for MUBUF with a frame index. The non-frame index MUBUF forms that
use a raw offset from SP will have the stack register for soffset.
During frame elimination, the soffset remains zero for entry functions
with zero dynamic allocas and no callsites, or else is updated to the
appropriate frame/stack register.
Also, did some code clean up and made all asserts around soffset
stricter to match.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D95071
Previously, instructions which could be
expressed as VOP3 in addition to another
encoding had a _e64 suffix on the tablegen
record name, while those
only available as VOP3 did not. With this
patch, all VOP3s will have the _e64 suffix.
The assembly does not change, only the mir.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D94341
Change-Id: Ia8ec8890d47f8f94bbbdac43745b4e9dd2b03423
Convert it to v_fma_legacy_f32 if it is profitable to do so, just like
other mac instructions that are converted to their mad equivalents.
Differential Revision: https://reviews.llvm.org/D94010
- Once an instruction is simplified, foldable candidates from it should
be invalidated or skipped as the operand index is no longer valid.
Differential Revision: https://reviews.llvm.org/D93174
The support is disabled by default. So far there is instruction
selection, spilling, and frame elimination. It also changes SP
from unswizzled to swizzled as used by flat scratch instructions,
so it cannot be mixed with MUBUF stack access.
At the very least missing:
- GlobalISel;
- Some optimizations in frame elimination in between vector
and scalar ALU;
- It shall finally allow to always materialize frame index
as an SGPR, but that is not implemented and frame elimination
cannot handle it yet;
- Unaligned and/or multidword flat scratch shall work, but it
is legalized now for MUBUF;
- Operand folding cannot optimize FI like with MUBUF yet;
- It will need scaling the value of the SP/FP in the DWARF
expression to recover the unswizzled scratch address;
Differential Revision: https://reviews.llvm.org/D89170
It's simpler to do this at codegen time than to do ad-hoc constant
folding of machine instructions in SIFoldOperands.
Differential Revision: https://reviews.llvm.org/D88028
This reverts commit c3492a1aa1.
I think this is the wrong strategy and wrong place to do this
transform anyway. Also reverts follow up commit
7d593d0d69.
- Need to lower COPY from SGPR to VGPR to a real instruction as the
standard COPY is used where the source and destination are from the
same register bank so that we potentially coalesc them together and
save one COPY. Considering that, backend optimizations, such as CSE,
won't handle them. However, the copy from SGPR to VGPR always needs
materializing to a native instruction, it should be lowered into a
real one before other backend optimizations.
Differential Revision: https://reviews.llvm.org/D87556
Pre-gfx10 all MODE-setting instructions were S_SETREG_B32 which is
marked as having unmodeled side effects, which makes the machine
scheduler treat it as a barrier. Now that we have proper implicit $mode
operands we can use a no-side-effects S_SETREG_B32_mode pseudo instead
for setregs that only touch the FP MODE bits, to give the scheduler more
freedom.
Differential Revision: https://reviews.llvm.org/D87446
It was found some packed immediate operands (e.g. `<half 1.0, half 2.0>`) are
incorrectly processed so one of two packed values were lost.
Introduced new function to check immediate 32-bit operand can be folded.
Converted condition about current op_sel flags value to fall-through.
Fixes: SWDEV-247595
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D87158
- When an operand is changed into an immediate value or like, ensure their
target flags being cleared or set properly.
Differential Revision: https://reviews.llvm.org/D87109
This can fold the immediate into the physical destination, but this
should not look for further users of the register. Fixes regression
introduced by 766cb615a3.
We are using undef on the indirect move source subreg and then
using implicit super-reg. This creates a problem in RA when
Greedy decides to split the register. It reassigns the implicit
super-reg but does not bother to change undef source because
it is really does not matter. The fix is to stop lying to RA and
drop undef flag.
This has also hit a problem in SIFoldOperands as it can fold
immediate into an indirect move since there is no undef flag
anymore. That results in multiple test failures, so added the
check for this case.
Differential Revision: https://reviews.llvm.org/D84899
I never completed the work on the patches referenced by
f8bf7d7f42, but this was intended to
avoid folding immediate writes into m0 which the coalescer doesn't
understand very well. Relax this to allow simple SGPR immediates to
fold directly into VGPR copies. This pattern shows up routinely in
current GlobalISel code since nothing is smart enough to emit VGPR
constants yet.
If the operand index exceeded the limit of unsigned char, it wrapped
and would point to the wrong operand. Increase the size of the operand
index field to avoid this, and also don't bother trying to fold into
implicit operands.
The hardware has created a real mess in the naming for add/sub, which
have been renamed basically every generation. Switch the carry out
pseudos to have the gfx9/gfx10 names. We were using the original SI/CI
v_add_i32/v_sub_i32 names. Later targets reintroduced these names as
carryless instructions with a saturating clamp bit, which we do not
define. Do this rename so we can unambiguously add these missing
instructions.
The carry-in versions should also be renamed, but at least those had a
consistent _u32 name to begin with. The 16-bit instructions were also
renamed, but aren't ambiguous.
This does regress assembler error message quality in some cases. In
mismatched wave32/wave64 situations, this will switch from
"unsupported instruction" to "invalid operand", with the error
pointing at the wrong position. I couldn't quite follow how the
assembler selects these, but the previous behavior seemed accidental
to me. It looked like there was a partial attempt to handle this which
was never completed (i.e. there is an AMDGPUOperand::isBoolReg but it
isn't used for anything).
This patch extends existing constant folding in logical operations to
handle S_XNOR, S_NAND, S_NOR, S_ANDN2, S_ORN2, V_LSHL_ADD_U32 and
V_AND_OR_B32. Also added a couple of tests for existing folds.
Add the scratch wave offset to the scratch buffer descriptor (SRSrc) in
the entry function prologue. This allows us to removes the scratch wave
offset register from the calling convention ABI.
As part of this change, allow the use of an inline constant zero for the
SOffset of MUBUF instructions accessing the stack in entry functions
when a frame pointer is not requested/required. Entry functions with
calls still need to set up the calling convention ABI stack pointer
register, and reference it in order to address arguments of called
functions. The ABI stack pointer register remains unswizzled, but is now
wave-relative instead of queue-relative.
Non-entry functions also use an inline constant zero SOffset for
wave-relative scratch access, but continue to use the stack and frame
pointers as before. When the stack or frame pointer is converted to a
swizzled offset it is now scaled directly, as the scratch wave offset no
longer needs to be subtracted first.
Update llvm/docs/AMDGPUUsage.rst to reflect these changes to the calling
convention.
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75138
Prepare to accurately track the future denormal-fp-math attribute
changes. The way to actually set these separately is not wired in yet.
This is just a mechanical change, and mostly still assumes the input
and output mode match. This should be refined for some cases. For
example, fcanonicalize lowering should use the flushing variant if
either input or output flushing is enabled
Summary:
Catch the (admittedly unusual) case where SIFoldOperands attempts to fold 2
constant operands into the same SALU operation, with neither operand able to be
encoded as an inline constant.
Change-Id: Ibc48d662c9ffd8bbacd154976b0b1c257ace0927
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70896
Start moving towards treating this as a property of the calling
convention, and not the subtarget. The default denormal mode should
not be part of the subtarget, and be moved into a separate function
attribute.
This patch is still NFC. The denormal mode remains as a subtarget
feature for now, but make the necessary changes to switch to using an
attribute.
That used to fail in the last testcase function because after
%0:sreg_64.sub0 was folded into %3:sreg_32_xm0_xexec COPY, it
was further folded into S_STORE_DWORD_IMM. Its legal effective
subreg class is SReg_32 while instruction expects more restricted
SReg_32_XM0_EXEC. However, SIInstrInfo::isLegalRegOperand()
passed the legality check and it was caught in the verifier.
Borrowed code from the verifier to check for RC legality.
Differential Revision: https://reviews.llvm.org/D69445
Both tryFoldOMod() and tryFoldClamp() remove original instruction,
so the check MI.modifiesRegister() may use a deleted MI.
Differential Revision: https://reviews.llvm.org/D69448
Potentially sgpr to sgpr copy should also be possible.
That is however trickier because we may end up with a
wrong register class at use because of xm0/xexec permutations.
Differential Revision: https://reviews.llvm.org/D69280
Only handle simple inter-block redefs of m0 to the same value. This
avoids interference from redefs of m0 in SILoadStoreOptimzer. I was
initially teaching that pass to ignore redefs of m0, but having them
not exist beforehand is much simpler.
This is in preparation for deleting the current special m0 handling in
SIFixSGPRCopies to allow the register coalescer to handle the
difficult cases.
llvm-svn: 375449
In a future patch, this will help cleanup m0 handling.
The register coalescer handles copies from a register that
materializes an immediate, but doesn't handle move immediates
itself. The virtual register uses will often be allocated to the same
register, so there end up being no real copy.
llvm-svn: 374257
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
That change (r363670) could leave a copy from vgpr to sgpr. Fixed.
Differential Revision: https://reviews.llvm.org/D66133
Change-Id: I00c3fe6fda2e8e1e36f53195b881b1449c777ea4
llvm-svn: 368736
Summary:
r363675 changed the exec modification helper function, now called
execMayBeModifiedBeforeUse, so that if no UseMI is specified it checks
all instructions in the basic block, even beyond the last use. That
meant that the DPP combiner no longer worked in any basic block that
ended with a control flow instruction, and in particular it didn't work
on code sequences generated by the atomic optimizer.
Fix it by reinstating the old behaviour but in a new helper function
execMayBeModifiedBeforeAnyUse, and limiting the number of instructions
scanned.
Reviewers: arsenm, vpykhtin
Subscribers: kzhuravl, nemanjai, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kbarton, MaskRay, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64393
llvm-svn: 365910
Summary:
The symbols use the processor-specific SHN_AMDGPU_LDS section index
introduced with a previous change. The linker is then expected to resolve
relocations, which are also emitted.
Initially disabled for HSA and PAL environments until they have caught up
in terms of linker and runtime loader.
Some notes:
- The llvm.amdgcn.groupstaticsize intrinsics can no longer be lowered
to a constant at compile times, which means some tests can no longer
be applied.
The current "solution" is a terrible hack, but the intrinsic isn't
used by Mesa, so we can keep it for now.
- We no longer know the full LDS size per kernel at compile time, which
means that we can no longer generate a relevant error message at
compile time. It would be possible to add a check for the size of
individual variables, but ultimately the linker will have to perform
the final check.
Change-Id: If66dbf33fccfbf3609aefefa2558ac0850d42275
Reviewers: arsenm, rampitec, t-tye, b-sumner, jsjodin
Subscribers: qcolombet, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61494
llvm-svn: 364297