Commit Graph

213 Commits

Author SHA1 Message Date
Kazu Hirata be37475897 [Transforms/IPO] Use range-based for loops (NFC) 2021-02-03 20:41:20 -08:00
Rong Xu b8f13db5b7 [SampleFDO][NFC] Detach SampleProfileLoader from SampleCoverageTracker
This patch detaches SampleProfileLoader from class
SampleCoverageTracker. We plan to move SampleProfileLoader
to a template class. This would remain SampleCoverageTracker
as a class.
Also make callsiteIsHot() as a file static function.

Differential Revision: https://reviews.llvm.org/D95823
2021-02-03 11:38:04 -08:00
Hongtao Yu 3d89b3cbec [CSSPGO] Introducing distribution factor for pseudo probe.
Sample re-annotation is required in LTO time to achieve a reasonable post-inline profile quality. However, we have seen that such LTO-time re-annotation degrades profile quality. This is mainly caused by preLTO code duplication that is done by passes such as loop unrolling, jump threading, indirect call promotion etc, where samples corresponding to a source location are aggregated multiple times due to the duplicates. In this change we are introducing a concept of distribution factor for pseudo probes so that samples can be distributed for duplicated probes scaled by a factor. We hope that optimizations duplicating code well-maintain the branch frequency information (BFI) based on which probe distribution factors are calculated. Distribution factors are updated at the end of preLTO pipeline to reflect an estimated portion of the real execution count.

This change also introduces a pseudo probe verifier that can be run after each IR passes to detect duplicated pseudo probes.

A saturated distribution factor stands for 1.0. A pesudo probe will carry a factor with the value ranged from 0.0 to 1.0. A 64-bit integral distribution factor field that represents [0.0, 1.0] is associated to each block probe. Unfortunately this cannot be done for callsite probes due to the size limitation of a 32-bit Dwarf discriminator. A 7-bit distribution factor is used instead.

Changes are also needed to the sample profile inliner to deal with prorated callsite counts. Call sites duplicated by PreLTO passes, when later on inlined in LTO time, should have the callees’s probe prorated based on the Prelink-computed distribution factors. The distribution factors should also be taken into account when computing hotness for inline candidates. Also, Indirect call promotion results in multiple callisites. The original samples should be distributed across them. This is fixed by adjusting the callisites' distribution factors.

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D93264
2021-02-02 11:55:01 -08:00
Wenlei He 1645f465be [CSSPGO] Factor out common part for CSSPGO inline and AFDO inline
Refactoring SampleProfileLoader::inlineHotFunctions to use helpers from CSSPGO inlining and reduce similar code in the inlining loop, plus minor cleanup for AFDO path.

This is resubmit of D95024, with build break and overtighten assertion fixed.

Test Plan:
2021-02-02 07:55:08 -08:00
Adrian Kuegel 48ca6da9d2 Revert "[CSSPGO] Factor out common part for CSSPGO inline and AFDO inline"
This reverts commit 9a03058d63.
2021-02-02 11:51:04 +01:00
Adrian Kuegel 3a65ec4bf9 Revert "Fix build break from D95024"
This reverts commit 09cd849fde.
2021-02-02 11:51:04 +01:00
Wenlei He 09cd849fde Fix build break from D95024 2021-02-02 01:01:12 -08:00
Wenlei He 9a03058d63 [CSSPGO] Factor out common part for CSSPGO inline and AFDO inline
Refactoring SampleProfileLoader::inlineHotFunctions to use helpers from CSSPGO inlining and reduce similar code in the inlining loop, plus minor cleanup for AFDO path.

Test Plan:

Differential Revision: https://reviews.llvm.org/D95024
2021-02-02 00:34:06 -08:00
Wenlei He 6bae5973c4 [CSSPGO] Call site prioritized inlining for sample PGO
This change implemented call site prioritized BFS profile guided inlining for sample profile loader. The new inlining strategy maximize the benefit of context-sensitive profile as mentioned in the follow up discussion of CSSPGO RFC. The change will not affect today's AutoFDO as it's opt-in. CSSPGO now defaults to the new FDO inliner, but can fall back to today's replay inliner using a switch (`-sample-profile-prioritized-inline=0`).

Motivation

With baseline AutoFDO, the inliner in sample profile loader only replays previous inlining, and the use of profile is only for pruning previous inlining that turned out to be cold. Due to the nature of replay, the FDO inliner is simple with hotness being the only decision factor. It has the following limitations that we're improving now for CSSPGO.
 - It doesn't take inline candidate size into account. Since it's doing replay, the size growth is bounded by previous CGSCC inlining. With context-sensitive profile, FDO inliner is no longer limited by previous inlining, so we need to take size into account to avoid significant size bloat.
 - The way it looks at hotness is not accurate. It uses total samples in an inlinee as proxy for hotness, while what really matters for an inline decision is the call site count. This is an unfortunate fall back because call site count and callee entry count are not reliable due to dwarf based correlation, especially for inlinees. Now paired with pseudo-probe, we have accurate call site count and callee's entry count, so we can use that to gauge hotness more accurately.
 - It treats all call sites from a block as hot as long as there's one call site considered hot. This is normally true, but since total samples is used as hotness proxy, this transitiveness within block magnifies the inacurate hotness heuristic. With pseduo-probe and the change above, this is no longer an issue for CSSPGO.

New FDO Inliner

Putting all the requirement for CSSPGO together, we need a top-down call site prioritized BFS inliner. Here're reasons why each component is needed.
 - Top-down: We need a top-down inliner to better leverage context-sensitive profile, so inlining is driven by accurate context profile, and post-inline is also accurate. This is already implemented in https://reviews.llvm.org/D70655.
 - Size Cap: For top-down inliner, taking function size into account for inline decision alone isn't sufficient to control size growth. We also need to explicitly cap size growth because with top-down inlining, we can grow inliner size significantly with large number of smaller inlinees even if each individually passes the cost/size check.
 - Prioritize call sites: With size cap, inlining order also becomes important, because if we stop inlining due to size budget limit, we'd want to use budget towards the most beneficial call sites.
 - BFS inline: Same as call site prioritization, if we stop inlining due to size budget limit, we want a balanced inline tree, rather than going deep on one call path.

Note that the new inliner avoids repeatedly evaluating same set of call site, so it should help with compile time too. For this reason, we could transition today's FDO inliner to use a queue with equal priority to avoid wasted reevaluation of same call site (TODO).

Speculative indirect call promotion and inlining is also supported now with CSSPGO just like baseline AutoFDO.

Tunings and knobs

I created tuning knobs for size growth/cap control, and for hot threshold separate from CGSCC inliner. The default values are selected based on initial tuning with CSSPGO.

Results

Evaluated with an internal LLVM fork couple months ago, plus another change to adjust hot-threshold cutoff for context profile (will send up after this one), the new inliner show ~1% geomean perf win on spec2006 with CSSPGO, while reducing code size too. The measurement was done using train-train setup, MonoLTO w/ new pass manager and pseudo-probe. Note that this is just a starting point - we hope that the new inliner will open up more opportunity with CSSPGO, but it will certainly take more time and effort to make it fully calibrated and ready for bigger workloads (we're working on it).

Differential Revision: https://reviews.llvm.org/D94001
2021-02-01 23:46:34 -08:00
modimo ce7f9cdb50 [InlineAdvisor] Allow replay of inline decisions for the CGSCC inliner from optimization remarks
This change leverages the work done in D83743 to replay in the SampleProfile inliner to also be used in the CGSCC inliner. NOTE: currently restricted to non-ML advisors only.

The added switch `-cgscc-inline-replay=<remarks file>` will replay the inlining decisions in that file where the remarks file is generated via `-Rpass=inline`. The aim here is to make it easier to analyze changes that would modify inlining heuristics to be separated from this behavior. Doing so allows easier examination of assembly and runtime behavior compared to the baseline rather than trying to dig through the large churn caused by inlining.

In LTO compilation, since inlining is done twice you can separately specify replay by passing the flag to the FE (`-cgscc-inline-replay=`) and to the linker (`-Wl,cgscc-inline-replay=`) with the remarks generated from their respective places.

Testing on mysqld by comparing the inline decisions between base (generates remarks.txt) and diff (replay using identical input/tools with remarks.txt) and examining the inlining sites with `diff` shows 14,000 mismatches out of 247,341 for a ~94% replay accuracy. I believe this gap can be narrowed further though for the general case we may never achieve full accuracy. For my personal use, this is close enough to be representative: I set the baseline as the one generated by the replay on identical input/toolset and compare that to my modified input/toolset using the same replay.

Testing:
ninja check-llvm
newly added test correctly replays CGSCC inlining decisions

Reviewed By: mtrofin, wenlei

Differential Revision: https://reviews.llvm.org/D94334
2021-01-25 15:38:57 -08:00
Wei Mi c9cd9a0066 [SampleFDO] Report error when reading a bad/incompatible profile instead of
turning off SampleFDO silently.

Currently sample loader pass turns off SampleFDO optimization silently when
it sees error in reading the profile. This behavior will defeat the tests
which could have caught those bad/incompatible profile problems. This patch
change the behavior to report error.

Differential Revision: https://reviews.llvm.org/D95269
2021-01-25 10:28:23 -08:00
Mircea Trofin ccec2cf1d9 Reland "[NPM][Inliner] Factor ImportedFunctionStats in the InlineAdvisor"
This reverts commit d97f776be5.

The original problem was due to build failures in shared lib builds. D95079
moved ImportedFunctionsInliningStatistics under Analysis, unblocking
this.
2021-01-20 13:33:43 -08:00
Mircea Trofin d97f776be5 Revert "[NPM][Inliner] Factor ImportedFunctionStats in the InlineAdvisor"
This reverts commit e8aec763a5.
2021-01-20 11:19:34 -08:00
Mircea Trofin e8aec763a5 [NPM][Inliner] Factor ImportedFunctionStats in the InlineAdvisor
When using 2 InlinePass instances in the same CGSCC - one for other
mandatory inlinings, the other for the heuristic-driven ones - the order
in which the ImportedFunctionStats would be output-ed would depend on
the destruction order of the inline passes, which is not deterministic.

This patch moves the ImportedFunctionStats responsibility to the
InlineAdvisor to address this problem.

Differential Revision: https://reviews.llvm.org/D94982
2021-01-20 11:07:36 -08:00
Wei Mi 21b1ad0340 [SampleFDO] Add the support to split the function profiles with context into
separate sections.

For ThinLTO, all the function profiles without context has been annotated to
outline functions if possible in prelink phase. In postlink phase, profile
annotation in postlink phase is only meaningful for function profile with
context. If the profile is large, it is better to split the profile into two
parts, one with context and one without, so the profile reading in postlink
phase only has to read the part with context. To have the profile splitting,
we extend the ExtBinary format to support different section arrangement. It
will be flexible to add other section layout in the future without the need
to create new class inheriting from ExtBinary class.

Differential Revision: https://reviews.llvm.org/D94435
2021-01-19 15:16:19 -08:00
Wei Mi 86341247c4 [NFC] Rename ThinLTOPhase to ThinOrFullLTOPhase and move it from PassBuilder.h
to Pass.h.

In some compiler passes like SampleProfileLoaderPass, we want to know which
LTO/ThinLTO phase the pass is in. Currently the phase is represented in enum
class PassBuilder::ThinLTOPhase, so it is only available in PassBuilder and
it also cannot represent phase in full LTO. The patch extends it to include
full LTO phases and move it from PassBuilder.h to Pass.h, then it is much
easier for PassBuilder to communiate with each pass about current LTO phase.

Differential Revision: https://reviews.llvm.org/D94613
2021-01-13 15:55:40 -08:00
modimo 2a49b7c64a [Inliner] Change inline remark format and update ReplayInlineAdvisor to use it
This change modifies the source location formatting from:
LineNumber.Discriminator
to:
LineNumber:ColumnNumber.Discriminator

The motivation here is to enhance location information for inline replay that currently exists for the SampleProfile inliner. This will be leveraged further in inline replay for the CGSCC inliner in the related diff.

The ReplayInlineAdvisor is also modified to read the new format and now takes into account the callee for greater accuracy.

Testing:
ninja check-llvm

Reviewed By: mtrofin

Differential Revision: https://reviews.llvm.org/D94333
2021-01-12 13:43:48 -08:00
Hongtao Yu ac068e014b [CSSPGO] Consume pseudo-probe-based AutoFDO profile
This change enables pseudo-probe-based sample counts to be consumed by the sample profile loader under the regular `-fprofile-sample-use` switch with minimal adjustments to the existing sample file formats. After the counts are imported, a probe helper, aka, a `PseudoProbeManager` object, is automatically launched to verify the CFG checksum of every function in the current compilation against the corresponding checksum from the profile. Mismatched checksums will cause a function profile to be slipped. A `SampleProfileProber` pass is scheduled before any of the `SampleProfileLoader` instances so that the CFG checksums as well as probe mappings are available during the profile loading time. The `PseudoProbeManager` object is set up right after the profile reading is done. In the future a CFG-based fuzzy matching could be done in `PseudoProbeManager`.

Samples will be applied only to pseudo probe instructions as well as probed callsites once the checksum verification goes through. Those instructions are processed in the same way that regular instructions would be processed in the line-number-based scenario. In other words, a function is processed in a regular way as if it was reduced to just containing pseudo probes (block probes and callsites).

**Adjustment to profile format **

A CFG checksum field is being added to the existing AutoFDO profile formats. So far only the text format and the extended binary format are supported. For the text format, a new line like
```
!CFGChecksum: 12345
```
is added to the end of the body sample lines. For the extended binary profile format, we introduce a metadata section to store the checksum map from function names to their CFG checksums.

Differential Revision: https://reviews.llvm.org/D92347
2020-12-16 15:57:18 -08:00
Wenlei He 6b989a1710 [CSSPGO] Infrastructure for context-sensitive Sample PGO and Inlining
This change adds the context-senstive sample PGO infracture described in CSSPGO RFC (https://groups.google.com/g/llvm-dev/c/1p1rdYbL93s). It introduced an abstraction between input profile and profile loader that queries input profile for functions. Specifically, there's now the notion of base profile and context profile, and they are managed by the new SampleContextTracker for adjusting and merging profiles based on inline decisions. It works with top-down profiled guided inliner in profile loader (https://reviews.llvm.org/D70655) for better inlining with specialization and better post-inline profile fidelity. In the future, we can also expose this infrastructure to CGSCC inliner in order for it to take advantage of context-sensitive profile. This change is the consumption part of context-sensitive profile (The generation part is in this stack: https://reviews.llvm.org/D89707). We've seen good results internally in conjunction with Pseudo-probe (https://reviews.llvm.org/D86193). Pacthes for integration with Pseudo-probe coming up soon.

Currently the new infrastructure kick in when input profile contains the new context-sensitive profile; otherwise it's no-op and does not affect existing AutoFDO.

**Interface**

There're two sets of interfaces for query and tracking respectively exposed from SampleContextTracker. For query, now instead of simply getting a profile from input for a function, we can explicitly query base profile or context profile for given call path of a function. For tracking, there're separate APIs for marking context profile as inlined, or promoting and merging not inlined context profile.

- Query base profile (`getBaseSamplesFor`)
Base profile is the merged synthetic profile for function's CFG profile from any outstanding (not inlined) context. We can query base profile by function.

- Query context profile (`getContextSamplesFor`)
Context profile is a function's CFG profile for a given calling context. We can query context profile by context string.

- Track inlined context profile (`markContextSamplesInlined`)
When a function is inlined for given calling context, we need to mark the context profile for that context as inlined. This is to make sure we don't include inlined context profile when synthesizing base profile for that inlined function.

- Track not-inlined context profile (`promoteMergeContextSamplesTree`)
When a function is not inlined for given calling context, we need to promote the context profile tree so the not inlined context becomes top-level context. This preserve the sub-context under that function so later inline decision for that not inlined function will still have context profile for its call tree. Note that profile will be merged if needed when promoting a context profile tree if any of the node already exists at its promoted destination.

**Implementation**

Implementation-wise, `SampleContext` is created as abstraction for context. Currently it's a string for call path, and we can later optimize it to something more efficient, e.g. context id. Each `SampleContext` also has a `ContextState` indicating whether it's raw context profile from input, whether it's inlined or merged, whether it's synthetic profile created by compiler. Each `FunctionSamples` now has a `SampleContext` that tells whether it's base profile or context profile, and for context profile what is the context and state.

On top of the above context representation, a custom trie tree is implemented to track and manager context profiles. Specifically, `SampleContextTracker` is implemented that encapsulates a trie tree with `ContextTireNode` as node. Each node of the trie tree represents a frame in calling context, thus the path from root to a node represents a valid calling context. We also track `FunctionSamples` for each node, so this trie tree can serve efficient query for context profile. Accordingly, context profile tree promotion now becomes moving a subtree to be under the root of entire tree, and merge nodes for subtree if this move encounters existing nodes.

**Integration**

`SampleContextTracker` is now also integrated with AutoFDO, `SampleProfileReader` and `SampleProfileLoader`. When we detected input profile contains context-sensitive profile, `SampleContextTracker` will be used to track profiles, and all profile query will go to `SampleContextTracker` instead of `SampleProfileReader` automatically. Tracking APIs are called automatically for each inline decision from `SampleProfileLoader`.

Differential Revision: https://reviews.llvm.org/D90125
2020-12-06 11:49:18 -08:00
Roman Lebedev 6861d938e5
Revert "clang-misexpect: Profile Guided Validation of Performance Annotations in LLVM"
See discussion in https://bugs.llvm.org/show_bug.cgi?id=45073 / https://reviews.llvm.org/D66324#2334485
the implementation is known-broken for certain inputs,
the bugreport was up for a significant amount of timer,
and there has been no activity to address it.
Therefore, just completely rip out all of misexpect handling.

I suspect, fixing it requires redesigning the internals of MD_misexpect.
Should anyone commit to fixing the implementation problem,
starting from clean slate may be better anyways.

This reverts commit 7bdad08429,
and some of it's follow-ups, that don't stand on their own.
2020-11-14 13:12:38 +03:00
Arthur Eubanks 5c31b8b94f Revert "Use uint64_t for branch weights instead of uint32_t"
This reverts commit 10f2a0d662.

More uint64_t overflows.
2020-10-31 00:25:32 -07:00
Arthur Eubanks 10f2a0d662 Use uint64_t for branch weights instead of uint32_t
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.

Reviewed By: davidxl

Differential Revision: https://reviews.llvm.org/D88609
2020-10-30 10:03:46 -07:00
Nico Weber 2a4e704c92 Revert "Use uint64_t for branch weights instead of uint32_t"
This reverts commit e5766f25c6.
Makes clang assert when building Chromium, see https://crbug.com/1142813
for a repro.
2020-10-27 09:26:21 -04:00
Arthur Eubanks e5766f25c6 Use uint64_t for branch weights instead of uint32_t
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.

Reviewed By: davidxl

Differential Revision: https://reviews.llvm.org/D88609
2020-10-26 20:24:04 -07:00
Hongtao Yu a16cbdd676 [AutoFDO] Remove a broken assert in merging inlinee samples
Duplicated callsites share the same callee profile if the original callsite was inlined. The sharing also causes the profile of callee's callee to be shared. This breaks the assert introduced ealier by D84997 in a tricky way.

To illustrate, I'm using an abstract example. Say we have three functions `A`, `B` and `C`. A calls B twice and B calls C once. Some optimize performed prior to the sample profile loader duplicates first callsite to `B` and the program may look like

```
A()
{
  B();  // with nested profile B1 and C1
  B();  // duplicated, with nested profile B1 and C1
  B();  // with nested profile B2 and C2
}
```

For some reason, the sample profile loader inliner then decides to only inline the first callsite in `A` and transforms `A` into

```
A()
{
  C();  // with nested profile C1
  B();  // duplicated, with nested profile B1 and C1
  B();  // with nested profile B2 and C2.
}
```

Here is what happens next:

	1. Failing to inline the callsite `C()` results in `C1`'s samples returned to `C`'s base (outlined) profile. In the meantime, `C1`'s head samples are updated to `C1`'s entry sample. This also affects the profile of the middle callsite which shares `C1` with the first callsite.
	2. Failing to inline the middle callsite results in `B1` returned to `B`'s base profile, which in turn will cause `C1` merged into `B`'s base profile. Note that the nest `C` profile in `B`'s base has a non-zero head sample count now. The value actually equals to `C1`'s entry count.
	3. Failing to inline last callsite results in `B2` returned to `B`'s base profile. Note that the nested `C` profile in `B`'s base now has an entry count equal to the sum of that of `C1` and `C2`, with the head count equal to that of `C1`. This will trigger the assert later on.
        4. Compiling `B` using `B`'s base profile. Failing to inline `C` there triggers the returning of the nested `C` profile. Since the nested `C` profile has a non-zero head count, the returning doesn't go through. Instead, the assert goes off.

It's good that `C1` is only returned once, based on using a non-zero head count to ensure an inline profile is only returned once. However C2 is never returned. While it seems hard to solve this perfectly within the current framework, I'm just removing the broken assert. This should be reasonably fixed by the upcoming CSSPGO work where counts returning is based on context-sensitivity and a distribution factor for callsite probes.

The simple example is extracted from one of our internal services. In reality, why the original callsite `B()` and duplicate one having different inline behavior is a magic. It has to do with imperfect counts in profile and extra complicated inlining that makes the hotness for them different.

Reviewed By: wenlei

Differential Revision: https://reviews.llvm.org/D90056
2020-10-23 17:42:21 -07:00
Wei Mi c67ccf5faf [SampleFDO] Enhance profile remapping support for searching inline instance
and indirect call promotion candidate.

Profile remapping is a feature to match a function in the module with its
profile in sample profile if the function name and the name in profile look
different but are equivalent using given remapping rules. This is a useful
feature to keep the performance stable by specifying some remapping rules
when sampleFDO targets are going through some large scale function signature
change.

However, currently profile remapping support is only valid for outline
function profile in SampleFDO. It cannot match a callee with an inline
instance profile if they have different but equivalent names. We found
that without the support for inline instance profile, remapping is less
effective for some large scale change.

To add that support, before any remapping lookup happens, all the names
in the profile will be inserted into remapper and the Key to the name
mapping will be recorded in a map called NameMap in the remapper. During
name lookup, a Key will be returned for the given name and it will be used
to extract an equivalent name in the profile from NameMap. So with the help
of the NameMap, we can translate any given name to an equivalent name in
the profile if it exists. Whenever we try to match a name in the module to
a name in the profile, we will try the match with the original name first,
and if it doesn't match, we will use the equivalent name got from remapper
to try the match for another time. In this way, the patch can enhance the
profile remapping support for searching inline instance and searching
indirect call promotion candidate.

In a planned large scale change of int64 type (long long) to int64_t (long),
we found the performance of a google internal benchmark degraded by 2% if
nothing was done. If existing profile remapping was enabled, the performance
degradation dropped to 1.2%. If the profile remapping with the current patch
was enabled, the performance degradation further dropped to 0.14% (Note the
experiment was done before searching indirect call promotion candidate was
added. We hope with the remapping support of searching indirect call promotion
candidate, the degradation can drop to 0% in the end. It will be evaluated
post commit).

Differential Revision: https://reviews.llvm.org/D86332
2020-08-26 11:07:35 -07:00
Fangrui Song 44ee9d070a Revert D85812 "[coroutine] should disable inline before calling coro split"
This reverts commit 2e43acfed8.

LLVMCoroutines (the library which contains Coroutines.h) depends on LLVMipo (the
library which contains SampleProfile.cpp). It is inappropriate for
SampleProfile.cpp to depent on Coroutines.h (circular dependency).

The test inverted dependencies as well:
llvm/test/Transforms/Coroutines/coro-inline.ll uses -sample-profile.
2020-08-24 11:41:05 -07:00
dongAxis 2e43acfed8 [coroutine] should disable inline before calling coro split
summary:
When callee coroutine function is inlined into caller coroutine
function before coro-split pass, llvm will emits "coroutine should
have exactly one defining @llvm.coro.begin". It seems that coro-early
pass can not handle this quiet well.
So we believe that unsplited coroutine function should not be inlined.
This patch fix such issue by not inlining function if it has attribute
"coroutine.presplit" (it means the function has not been splited) to
fix this issue

TestPlan: check-llvm

Reviewed By: wenlei

Differential Revision: https://reviews.llvm.org/D85812
2020-08-24 22:22:08 +08:00
Wenlei He 577e58bcc7 [InlineAdvisor] New inliner advisor to replay inlining from optimization remarks
This change added a new inline advisor that takes optimization remarks from previous inlining as input, and provides the decision as advice so current inlining can replay inline decisions of a different compilation. Dwarf inline stack with line and discriminator is used as anchor for call sites including call context. The change can be useful for Inliner tuning as it provides a channel to allow external input for tweaking inline decisions. Existing alternatives like alwaysinline attribute is per-function, not per-callsite. Per-callsite inline intrinsic can be another solution (not yet existing), but it's intrusive to implement and also does not differentiate call context.

A switch -sample-profile-inline-replay=<inline_remarks_file> is added to hook up the new inline advisor with SampleProfileLoader's inline decision for replay. Since SampleProfileLoader does top-down inlining, inline decision can be specialized for each call context, hence we should be able to replay inlining accurately. However with a bottom-up inliner like CGSCC inlining, the replay can be limited due to lack of specialization for different call context. Apart from that limitation, the new inline advisor can still be used by regular CGSCC inliner later if needed for tuning purpose.

This is a resubmit of https://reviews.llvm.org/D83743
2020-08-15 20:17:21 -07:00
Wei Mi 4cd8e9b169 [SampleFDO] Stop letting findCalleeFunctionSamples return unrelated profiles
for invoke instructions.

We see a warning of "No debug information found in function foo: Function
profile not used" in a case. The function foo is called by an invoke
instruction. It has no debug information because it has attribute((nodebug))
in the definition. It shouldn't have profile instance in the sample profile
but compiler thinks it does, that turns out to be a compiler bug in
findCalleeFunctionSamples. The bug is exposed when sample-profile-merge-inlinee
is enabled recently.

Currently in findCalleeFunctionSamples, CalleeName is unset and is empty for
invoke instruction. For empty CalleeName, findFunctionSamplesAt will treat
the call as an indirect call and will return any inline instance profile at
the same location as the instruction. That leads to a wrong profile being
returned to function foo.

The patch set CalleeName when the instruction is an invoke.

Differential Revision: https://reviews.llvm.org/D85664
2020-08-10 12:41:09 -07:00
Hongtao Yu d23c1d6a8d [AutoFDO] Avoid merging inlinee samples multiple times
A function call can be replicated by optimizations like loop unroll and jump threading and the replicates end up sharing the sample nested callee profile. Therefore when it comes to merging samples for uninlined callees in the sample profile inliner, a callee profile can be merged multiple times which will cause an assert to fire.

This change avoids merging same callee profile for duplicate callsites by filtering out callee profiles with a non-zero head sample count.

Reviewed By: wenlei, wmi

Differential Revision: https://reviews.llvm.org/D84997
2020-07-31 09:30:05 -07:00
Wei Mi 836991d367 Fix a crash when the sample profile uses md5 and -sample-profile-merge-inlinee
is enabled.

When -sample-profile-merge-inlinee is enabled, new FunctionSamples may be
created during profile merge without GUIDToFuncNameMap being initialized.
That will occasionally cause compiler crash. The patch fixes it.

Differential Revision: https://reviews.llvm.org/D84994
2020-07-30 21:21:06 -07:00
Wenlei He d41d952be9 Revert "[InlineAdvisor] New inliner advisor to replay inlining from optimization remarks"
This reverts commit 2d6ecfa168.
2020-07-19 08:49:04 -07:00
Wenlei He 2d6ecfa168 [InlineAdvisor] New inliner advisor to replay inlining from optimization remarks
Summary:
This change added a new inline advisor that takes optimization remarks from previous inlining as input, and provides the decision as advice so current inlining can replay inline decisions of a different compilation. Dwarf inline stack with line and discriminator is used as anchor for call sites including call context. The change can be useful for Inliner tuning as it provides a channel to allow external input for tweaking inline decisions. Existing alternatives like alwaysinline attribute is per-function, not per-callsite. Per-callsite inline intrinsic can be another solution (not yet existing), but it's intrusive to implement and also does not differentiate call context.

A switch -sample-profile-inline-replay=<inline_remarks_file> is added to hook up the new inline advisor with SampleProfileLoader's inline decision for replay. Since SampleProfileLoader does top-down inlining, inline decision can be specialized for each call context, hence we should be able to replay inlining accurately. However with a bottom-up inliner like CGSCC inlining, the replay can be limited due to lack of specialization for different call context. Apart from that limitation, the new inline advisor can still be used by regular CGSCC inliner later if needed for tuning purpose.

Subscribers: mgorny, aprantl, hiraditya, llvm-commits

Tags: #llvm

Resubmit for https://reviews.llvm.org/D84086
2020-07-19 08:21:05 -07:00
Eric Christopher ae08dbc673 Temporarily Revert "[InlineAdvisor] New inliner advisor to replay inlining from optimization remarks"
as it is failing the inline-replay.ll test as well as sanitizers/Werror
from returning a stack local variable.

This reverts commit 029946b112.
2020-07-17 14:58:01 -07:00
Wenlei He 029946b112 [InlineAdvisor] New inliner advisor to replay inlining from optimization remarks
Summary:
This change added a new inline advisor that takes optimization remarks for previous inlining as input, and provide the decision as advice so current inlining can replay inline decision of a different compilation. Dwarf inline stack with line and discriminator is used as anchor for call sites. The change can be useful for Inliner tuning.
A switch -sample-profile-inline-replay=<inline_remarks_file> is added to hook up the new inliner advisor with SampleProfileLoader's inline decision for replay. The new inline advisor can also be used by regular CGSCC inliner later if needed.

Reviewers: davidxl, mtrofin, wmi, hoy

Subscribers: aprantl, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D83743
2020-07-17 13:30:47 -07:00
Wei Mi e32469a140 [SampleFDO] Enable sample-profile-top-down-load and sample-profile-merge-inlinee
by default.

sample-profile-top-down-load is an internal option which can enable top-down
order of inlining and profile annotation in sample profile load pass. It was
found to be beneficial for better profile annotation.

Recently we found it could also solve some build time issue. Suppose function
A has many callsites in function B. In the last release binary where sample
profile was collected, the outline copy of A is large because there are many
other functions inlined into A. However although all the callsites calling A
in B are inlined, but every inlined body is small (A was inlined into B
before other functions are inlined into A), there is no build time issue in
last release.

In an optimized build using the sample profile collected from last release,
without top-down inlining, we saw a case that A got very large because of
inlining, and then multiple callsites of A got inlined into B, and that led
to a huge B which caused significant build time issue besides profile
annotation issue.

To solve that problem, the patch enables the flag
sample-profile-top-down-load by default. sample-profile-top-down-load can
have better performance when it is enabled together with
sample-profile-merge-inlinee so in this patch we also enable
sample-profile-merge-inlinee by default.

Differential Revision: https://reviews.llvm.org/D82919
2020-07-08 09:23:18 -07:00
Wenlei He 7c8a6936bf [Remarks] Add callsite locations to inline remarks
Summary:
Add call site location info into inline remarks so we can differentiate inline sites.
This can be useful for inliner tuning. We can also reconstruct full hierarchical inline
tree from parsing such remarks. The messege of inline remark is also tweaked so we can
differentiate SampleProfileLoader inline from CGSCC inline.

Reviewers: wmi, davidxl, hoy

Subscribers: hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D82213
2020-06-20 23:32:10 -07:00
Wei Mi 7a6c89427c [SampleFDO] Add use-sample-profile function attribute.
When sampleFDO is enabled, people may expect they can use
-fno-profile-sample-use to opt-out using sample profile for a certain file.
That could be either for debugging purpose or for performance tuning purpose.
However, when thinlto is enabled, if a function in file A compiled with
-fno-profile-sample-use is imported to another file B compiled with
-fprofile-sample-use, the inlined copy of the function in file B may still
get its profile annotated.

The inconsistency may even introduce profile unused warning because if the
target is not compiled with explicit debug information flag, the function
in file A won't have its debug information enabled (debug information will
be enabled implicitly only when -fprofile-sample-use is used). After it is
imported into file B which is compiled with -fprofile-sample-use, profile
annotation for the outline copy of the function will fail because the
function has no debug information, and that will trigger  profile unused
warning.

We add a new attribute use-sample-profile to control whether a function
will use its sample profile no matter for its outline or inline copies.
That will make the behavior of -fno-profile-sample-use consistent.

Differential Revision: https://reviews.llvm.org/D79959
2020-06-02 17:23:17 -07:00
Mircea Trofin fa3b587196 [llvm]NFC] Simplify ProfileSummaryInfo state transitions
ProfileSummaryInfo is updated seldom, as result of very specific
triggers. This patch clearly demarcates state updates from read-only uses.
This, arguably, improves readability and maintainability.
2020-05-27 11:58:37 -07:00
Yi Kong c1c9eb0ab7 [Transforms] Check validity of profile reader before invoking it
Although an invalid sampling profile would fail the compilation anyway,
this avoids crashing the compiler.
2020-05-26 20:11:24 +08:00
Mircea Trofin 08e2386dee Revert "Revert "[llvm][NFC] Cleanup uses of std::function in Inlining-related APIs""
This reverts commit 454de99a6f.

The problem was that one of the ctor arguments of CallAnalyzer was left
to be const std::function<>&. A function_ref was passed for it, and then
the ctor stored the value in a function_ref field. So a std::function<>
would be created as a temporary, and not survive past the ctor
invocation, while the field would.

Tested locally by following https://github.com/google/sanitizers/wiki/SanitizerBotReproduceBuild

Original Differential Revision: https://reviews.llvm.org/D79917
2020-05-15 12:29:16 -07:00
Mircea Trofin 454de99a6f Revert "[llvm][NFC] Cleanup uses of std::function in Inlining-related APIs"
This reverts commit 767db5be67.
2020-05-14 22:32:44 -07:00
Mircea Trofin 767db5be67 [llvm][NFC] Cleanup uses of std::function in Inlining-related APIs
Summary:
Replacing uses of std::function pointers or refs, or Optional, to
function_ref, since the usage pattern allows that. If the function is
optional, using a default parameter value (nullptr). This led to a few
parameter reshufles, to push all optionals to the end of the parameter
list.

Reviewers: davidxl, dblaikie

Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79917
2020-05-14 22:13:53 -07:00
Xun Li 44e5aaf911 Remove an unused Module param
Summary:
In D65848 the function getFuncNameInModule was refactored to no longer use module.
This diff removes the parameter and rename the function name to avoid confusion.

Reviewers: wenlei, wmi, davidxl

Reviewed By: wenlei

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79310
2020-05-10 22:09:55 -07:00
Mircea Trofin 8a7cf11f92 [llvm][NFC] Refactor APIs operating on CallBase
Summary:
Refactored the parameter and return type where they are too generally
typed as Instruction.

Reviewers: dblaikie, wmi, craig.topper

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79027
2020-04-28 13:23:47 -07:00
Craig Topper 5034df8600 [SampleProfile] Use CallBase in function arguments and data structures to reduce the number of explicit casts. NFCI
Removing CallSite left us with a bunch of explicit casts from
Instruction to CallBase. This moves the casts earlier so that
function arguments and data structure types are CallBase so
we don't have to cast when we use them.

Differential Revision: https://reviews.llvm.org/D78246
2020-04-16 22:10:34 -07:00
Craig Topper 7b6ff8bf1f [CallSite removal][SampleProfile] Use CallBase instead of CallSite. NFC
Differential Revision: https://reviews.llvm.org/D78219
2020-04-15 12:47:17 -07:00
Mircea Trofin 4aae4e3f48 [llvm][NFC] CallSite removal from inliner-related files
Summary: This removes CallSite from inliner files. Some dependencies where thus affected.

Reviewers: dblaikie, davidxl, craig.topper

Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, aheejin, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77991
2020-04-13 21:28:58 -07:00
Mircea Trofin d2f1cd5d97 [llvm][NFC] Refactor uses of CallSite to CallBase - call promotion
Summary:
Updated CallPromotionUtils and impacted sites. Parameters that are
expected to be non-null, and return values that are guranteed non-null,
were replaced with CallBase references rather than pointers.

Left FIXME in places where more changes are facilitated by CallBase, but
aren't CallSites: Instruction* parameters or return values, for example,
where the contract that they are actually CallBase values.

Reviewers: davidxl, dblaikie, wmi

Reviewed By: dblaikie

Subscribers: arsenm, jvesely, nhaehnle, eraman, hiraditya, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77930
2020-04-12 08:27:29 -07:00