Commit Graph

751 Commits

Author SHA1 Message Date
Sanjay Patel 0ce2920f17 [InstCombine] try to narrow min/max intrinsics with constant operand
The constant trunc/ext may not be the optimal pre-condition,
but I think that handles the common cases.

Example of Alive2 proof:
https://alive2.llvm.org/ce/z/sREeLC

This is another step towards canonicalizing to the intrinsics.
Narrowing was identified as source of potential regression for
abs(), so we need to handle this for min/max - see:
https://llvm.org/PR48816

If this is not enough, we could process intrinsics in
the trunc-driven matching in canEvaluateTruncated().
2021-02-01 13:44:13 -05:00
Valery N Dmitriev 716b9dd0d8 [InstCombine] Preserve FMF for powi simplifications.
Differential Revision: https://reviews.llvm.org/D95455
2021-01-26 13:26:06 -08:00
Sanjay Patel 09a136bcc6 [InstCombine] narrow min/max intrinsics with extended inputs
We can sink extends after min/max if they match and would
not change the sign-interpreted compare. The only combo
that doesn't work is zext+smin/smax because the zexts
could change a negative number into positive:
https://alive2.llvm.org/ce/z/D6sz6J

Sext+umax/umin works:

  define i32 @src(i8 %x, i8 %y) {
  %0:
    %sx = sext i8 %x to i32
    %sy = sext i8 %y to i32
    %m = umax i32 %sx, %sy
    ret i32 %m
  }
  =>
  define i32 @tgt(i8 %x, i8 %y) {
  %0:
    %m = umax i8 %x, %y
    %r = sext i8 %m to i32
    ret i32 %r
  }
  Transformation seems to be correct!
2021-01-25 07:52:50 -05:00
Sanjay Patel 411c144e4c [InstCombine] narrow abs with sign-extended input
In the motivating cases from https://llvm.org/PR48816 ,
we have a trailing trunc. But that is not required to
reduce the abs width:
https://alive2.llvm.org/ce/z/ECaz-p
...as long as we clear the int-min-is-poison bit (nsw).

We have some existing tests that are affected, and I'm
not sure what the overall implications are, but in general
we favor narrowing operations over preserving nsw/nuw.

If that causes problems, we could restrict this transform
based on type (shouldChangeType() and/or vector vs. scalar).

Differential Revision: https://reviews.llvm.org/D95235
2021-01-22 13:36:04 -05:00
Nikita Popov 23390e7a13 [InstCombine] Handle logical and/or in assume optimization
assume(a && b) can be converted to assume(a); assume(b) even if
the condition is logical. Same for assume(!(a || b)).
2021-01-12 22:36:40 +01:00
Juneyoung Lee 9b29610228 Use unary CreateShuffleVector if possible
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.

Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)

The order is swapped, but in terms of correctness it is still fine.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D93923
2020-12-30 22:36:08 +09:00
Roman Lebedev b3021a72a6
[IR][InstCombine] Add m_ImmConstant(), that matches on non-ConstantExpr constants, and use it
A pattern to ignore ConstantExpr's is quite common, since they frequently
lead into infinite combine loops, so let's make writing it easier.
2020-12-24 21:20:47 +03:00
Joe Ellis 80c33de2d3 [SelectionDAG] Add llvm.vector.{extract,insert} intrinsics
This commit adds two new intrinsics.

- llvm.experimental.vector.insert: used to insert a vector into another
  vector starting at a given index.

- llvm.experimental.vector.extract: used to extract a subvector from a
  larger vector starting from a given index.

The codegen work for these intrinsics has already been completed; this
commit is simply exposing the existing ISD nodes to LLVM IR.

Reviewed By: cameron.mcinally

Differential Revision: https://reviews.llvm.org/D91362
2020-12-09 11:08:41 +00:00
Florian Hahn 53f4c4b2cc [InstCombine] Do not introduce bitcasts for swifterror arguments.
The following constraints hold for swifterror values:

    A swifterror value (either the parameter or the alloca) can only
    be loaded and stored from, or used as a swifterror argument.

This patch updates instcombine to not try to convert a bitcast of a
function into a bitcast of a swifterror argument.

Reviewed By: rjmccall

Differential Revision: https://reviews.llvm.org/D90258
2020-10-28 21:52:12 +00:00
Simon Pilgrim 60ba9233d1 Revert rG25a97c3a43d7 - "[InstCombine] visitCallInst - retain undefs in vector funnel shift amounts"
This reverts commit 25a97c3a43.

We have other constant folds that fold undef funnel shift amounts to 0 - so we need to be consistent.

If we end up with regressions where we lose a splat shift amount pattern we'll have to investigate other canonicalizations, but matchFunnelShift currently protects us from that.
2020-10-14 18:14:37 +01:00
Simon Pilgrim 25a97c3a43 [InstCombine] visitCallInst - retain undefs in vector funnel shift amounts
By always performing a modulo on the shift amount constants this was causing undef amounts being replaced with zero, meaning we were losing funnel shift by splat (with undef) patterns.

Tweaked the shift amount bounds check to support (passthrough) undefs, and use Constant::mergeUndefsWith to preserve the undefs after folding.
2020-10-14 14:38:21 +01:00
Simon Pilgrim 323d08e50a [InstCombine] Fix bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) vector support
Use getScalarSizeInBits not getPrimitiveSizeInBits to determine the shift value at the element level.
2020-09-30 16:01:08 +01:00
Sanjay Patel 0527c8749b [InstCombine] ease alignment restriction for converting masked load to normal load
I think we initially made this fold conservative to be safer, but we do not
need the alignment attribute/metadata limitation because the masked load
intrinsic itself specifies the alignment. A normal vector load is better for
IR transforms and should be no worse in codegen than the masked alternative.
If it is worse for some target, the backend can reverse this transform.

Differential Revision: https://reviews.llvm.org/D88505
2020-09-29 15:26:22 -04:00
Tyker 78de7297ab Reland [AssumeBundles] Use operand bundles to encode alignment assumptions
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html

Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".

As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
2020-09-12 15:36:06 +02:00
Christopher Tetreault 7ddfd9b3eb [SVE] Bail from VectorUtils heuristics for scalable vectors
Bail from maskIsAllZeroOrUndef and maskIsAllOneOrUndef prior to iterating over the number of
elements for scalable vectors.

Assert that the mask type is not scalable in possiblyDemandedEltsInMask .

Assert that the types are correct in all three functions.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D87424
2020-09-10 12:29:37 -07:00
Nikita Popov e97f3b1b43 [InstCombine] Fold abs of known negative operand
If we know that the abs operand is known negative, we can replace
it with a neg.

To avoid computing known bits twice, I've removed the fold for the
non-negative case from InstSimplify. Both the non-negative and the
negative case are handled by InstCombine now, with one known bits call.

Differential Revision: https://reviews.llvm.org/D87196
2020-09-08 20:14:35 +02:00
Nikita Popov 4892d3a198 [InstCombine] Fold abs with dominating condition
Similar to D87168, but for abs. If we have a dominating x >= 0
condition, then we know that abs(x) is x. This fold is in
InstCombine, because we need to create a sub instruction for
the x < 0 case.

Differential Revision: https://reviews.llvm.org/D87184
2020-09-05 16:18:35 +02:00
Nikita Popov 10cb23c6ca [InstCombine] Fold cttz of abs intrinsic
Same as the existing fold for SPF_ABS. We don't need to explicitly
handle the NABS variant, as we'll first fold away the neg in that
case.
2020-09-05 12:25:41 +02:00
Sanjay Patel 2391a34f9f [InstCombine] canonicalize all commutative intrinsics with constant arg 2020-09-03 12:42:04 -04:00
Christopher Tetreault 640f20b0c7 [SVE] Remove calls to VectorType::getNumElements from InstCombine
Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D82237
2020-08-31 12:59:10 -07:00
Roman Lebedev bd12113f57
[NFC][InstCombine] Fix some comments: the code already uses IC::replaceInstUsesWith() 2020-08-29 15:10:14 +03:00
Sanjay Patel 6a44edb8da [InstCombine] fold abs of select with negated op (PR39474)
Similar to the existing transform - peek through a select
to match a value and its negation.

https://alive2.llvm.org/ce/z/MXi5KG

  define i8 @src(i1 %b, i8 %x) {
  %0:
    %neg = sub i8 0, %x
    %sel = select i1 %b, i8 %x, i8 %neg
    %abs = abs i8 %sel, 1
    ret i8 %abs
  }
  =>
  define i8 @tgt(i1 %b, i8 %x) {
  %0:
    %abs = abs i8 %x, 1
    ret i8 %abs
  }
  Transformation seems to be correct!
2020-08-24 07:37:55 -04:00
Serguei Katkov 9e362bb0eb [InstCombine] Remove unused entries in gc-live bundle of statepoint
If some of gc live value are not used in gc.relocate we can remove them
from gc-live bundle of statepoint instruction.

Also the CL removes duplicated Values in gc-live bundle.

Reviewers: reames, dantrushin
Reviewed By: dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D85959
2020-08-22 01:36:22 +07:00
Serguei Katkov 63d9d56a55 [InstCombine] Move handling of gc.relocate in a gc.statepoint
The only def for gc.relocate is a gc.statepoint. But real dependency is not
described by def-use chain. Instead this dependency is encoded by indecies
of operands in gc-live bundle of statepoint as integer constants in gc.relocate.

InstCombine operates by def-use chain. As a result when value in gc-live bundle
is simplified the gc.statepoint itself is not simplified but it might simplify dependent
gc.relocates. To trigger the optimization of gc.relocate we now unconditionally trigger
check of all dependent gc.relocates by adding them to worklist.

This CL handles of gc.relocates as process of gc.statepoint optimization considering
gc.statepoint and related gc.relocate as whole entity.

Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D85954
2020-08-21 23:44:23 +07:00
Sanjay Patel 139da9c4d7 [InstCombine] fold fabs of select with negated operand
This is the FP example shown in:
https://bugs.llvm.org/PR39474
2020-08-18 09:23:07 -04:00
Sanjay Patel 3ffb751f3d [InstCombine] fold copysign with fabs/fneg operand
We already get this in the backend, but we need to do
it in IR too to consistently get yet more copysign
transforms.
2020-08-16 08:53:47 -04:00
Sanjay Patel 3fed67b7e6 [InstCombine] reduce code duplication; NFC 2020-08-16 08:53:47 -04:00
Serguei Katkov 98ba0a5ffe [InstCombine] Handle gc.relocate(null) in one iteration
InstCombine adds users of transformed instruction to working list to
process on the same iteration. However gc.relocate may have a hidden
user (next gc.relocate) which is connected through gc.statepoint intrinsic and
there is no direct def-use chain between them.

In this case if the next gc.relocation is already processed it will not be added
to worklist and will not be able to be processed on the same iteration.
Let's we have the following case:
A = gc.relocate(null)
B = statepoint(A)
C = gc.relocate(B, hidden(A))
If C is already considered then after replacement of A with null, statepoint B
instruction will be added to the queue but not C.
C can be processed only on the next iteration.

If the chain of relocation is pretty long the many iteration may be required.
This change is to reduce the number of iteration to meet the latest changes
related to reducing infinite loop threshold.

This is a quick (not best) fix. In the follow up patches I plan to move gc relocation
handling into statepoint handler. This should also help to remove unused gc live
entries in statepoint bundle.

Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D75598
2020-08-13 23:16:27 +07:00
Craig Topper 4a19e6156e [InstCombine] Fold abs(-x) -> abs(x)
Negating the input doesn't matter. I left a FIXME to copy the nsw flag if its present on the neg but not on the abs.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D85055
2020-08-01 13:25:00 -07:00
Sebastian Neubauer 2a6c871596 [InstCombine] Move target-specific inst combining
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.

D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).

This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic

A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.

This allows to move about 3000 lines out from InstCombine to the targets.

Differential Revision: https://reviews.llvm.org/D81728
2020-07-22 15:59:49 +02:00
Eric Christopher 7bfaa40086 Temporarily Revert "[AssumeBundles] Use operand bundles to encode alignment assumptions"
due to the performance bugs filed in https://bugs.llvm.org/show_bug.cgi?id=46753.

An SROA change soon may obviate some of these problems.

This reverts commit 8d09f20798.
2020-07-16 11:54:04 -07:00
Tyker 8d09f20798 [AssumeBundles] Use operand bundles to encode alignment assumptions
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html

Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".

As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.

Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1

Reviewed By: jdoerfert

Subscribers: thopre, yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71739
2020-07-14 01:05:58 +02:00
Guillaume Chatelet 04288e93be Fix 46594 - Alignment assertion failure in instcombine 2020-07-06 08:45:05 +00:00
Roman Lebedev 7ea46aee36
Revert "[AssumeBundles] Use operand bundles to encode alignment assumptions"
Assume bundle can have more than one entry with the same name,
but at least AlignmentFromAssumptionsPass::extractAlignmentInfo() uses
getOperandBundle("align"), which internally assumes that it isn't the
case, and happily crashes otherwise.

Minimal reduced reproducer: run `opt -alignment-from-assumptions` on

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"

%0 = type { i64, %1*, i8*, i64, %2, i32, %3*, i8* }
%1 = type opaque
%2 = type { i8, i8, i16 }
%3 = type { i32, i32, i32, i32 }

; Function Attrs: nounwind
define i32 @f(%0* noalias nocapture readonly %arg, %0* noalias %arg1) local_unnamed_addr #0 {
bb:
  call void @llvm.assume(i1 true) [ "align"(%0* %arg, i64 8), "align"(%0* %arg1, i64 8) ]
  ret i32 0
}

; Function Attrs: nounwind willreturn
declare void @llvm.assume(i1) #1

attributes #0 = { nounwind "reciprocal-estimates"="none" }
attributes #1 = { nounwind willreturn }


This is what we'd have with -mllvm -enable-knowledge-retention

This reverts commit c95ffadb24.
2020-07-04 23:49:23 +03:00
Guillaume Chatelet 87e2751cf0 [Alignment][NFC] Use proper getter to retrieve alignment from ConstantInt and ConstantSDNode
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D83082
2020-07-03 08:06:43 +00:00
David Green 9e49d1d9b8 [InstCombine] fma x, y, 0 -> fmul x, y
If the addend of the fma is zero, common sense would suggest that we can
convert fma x, y, 0.0 to fmul x, y. This comes up with some user code
that was expecting the first fma in an unrolled loop to simplify to a
fmul.

Floating point often does not follow naive common sense though. Alive
suggests that this should be guarded by nsz (as fadd -0.0, 0.0 = 0.0).
fma x, y, -0.0 is always valid.

Differential Revision: https://reviews.llvm.org/D82778
2020-06-30 19:56:37 +01:00
Simon Pilgrim db69b17409 LoopAccessAnalysis.h - reduce AliasAnalysis.h include to forward declaration. NFC.
Fix implicit include dependencies in source files and replace legacy AliasAnalysis typedef with AAResults where necessary.
2020-06-25 16:00:42 +01:00
Tyker c95ffadb24 [AssumeBundles] Use operand bundles to encode alignment assumptions
Summary:
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html

Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".

As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.

Reviewers: hfinkel, xbolva00, lebedev.ri, nikic, rjmccall, spatel, jdoerfert, sstefan1

Reviewed By: jdoerfert

Subscribers: yamauchi, kuter, fhahn, merge_guards_bot, hiraditya, bollu, rkruppe, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71739
2020-06-25 12:59:44 +02:00
Simon Pilgrim 8233439fdb [InstCombine] Ensure allocation alignment mask is within range before applying as an attribute
Fixes OSS-Fuzz #23214
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=23214
2020-06-09 17:31:55 +01:00
Yevgeny Rouban 417bcb8827 [Instruction] Remove setProfWeight()
Remove the function Instruction::setProfWeight() and make
use of Instruction::copyMetadata(.., {LLVMContext::MD_prof}).
This is correct for all use cases of setProfWeight() as it
is applied to CallBase instructions only.
This change results in prof metadata copied intact even if
the source has "VP". The old pair of calls
extractProfTotalWeight() + setProfWeight() resulted in
setting branch_weights if the source had "VP" data.

Reviewers: yamauchi, davidxl
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80987
2020-06-04 15:10:55 +07:00
Christopher Tetreault 8f8029b458 [SVE] Eliminate calls to default-false VectorType::get() from InstCombine
Reviewers: efriedma, david-arm, fpetrogalli, spatel

Reviewed By: david-arm

Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80334
2020-05-29 15:31:31 -07:00
Philip Reames 87bea912c2 [Statepoint] Replace uses of isX functions with idiomatic isa<X>
Now that all of the statepoint related routines have classes with isa support, let's cleanup.

I'm leaving the (dead) utitilities in tree for a few days so that I can do the same cleanup downstream without breakage.
2020-05-27 18:32:28 -07:00
Serge Pavlov 4d20e31f73 [FPEnv] Intrinsic llvm.roundeven
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.

Differential Revision: https://reviews.llvm.org/D75670
2020-05-26 19:24:58 +07:00
Matt Arsenault 27fe841aa6 AMDGPU: Refine rcp/rsq intrinsic folding for modern FP rules
We have to assume undef could be an snan, which would need quieting so
returning qnan is safer than undef. Also consider strictfp, and don't
care if the result rounded.
2020-05-23 13:28:36 -04:00
Matt Arsenault 88c20fa3d2 InstCombine: Add constant folding/simplify for amdgcn.ldexp intrinsic
This really belongs in InstructionSimplify since it doesn't introduce
new instructions. Put it in instcombine to avoid increasing the number
of passes considering target intrinsics.

I also noticed that we seem to now be interpreting strictfp attributes
on call sites, so try to handle that.
2020-05-22 08:21:38 -04:00
Arthur Eubanks 8a88755610 Reland [X86] Codegen for preallocated
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.

In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.

This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.

The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.

The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.

Force any function containing a preallocated call to use the frame
pointer.

Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.

Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).

Aside from the tests added here, I checked that this codegen produces
correct code for something like

```
struct A {
        A();
        A(A&&);
        ~A();
};

void bar() {
        foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```

by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.

Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77689
2020-05-20 11:25:44 -07:00
Arthur Eubanks b8cbff51d3 Revert "[X86] Codegen for preallocated"
This reverts commit 810567dc69.

Some tests are unexpectedly passing
2020-05-20 10:04:55 -07:00
Arthur Eubanks 810567dc69 [X86] Codegen for preallocated
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.

In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.

This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.

The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.

The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.

Force any function containing a preallocated call to use the frame
pointer.

Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.

Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).

Aside from the tests added here, I checked that this codegen produces
correct code for something like

```
struct A {
        A();
        A(A&&);
        ~A();
};

void bar() {
        foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```

by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D77689
2020-05-20 09:20:38 -07:00
Eli Friedman 11aa3707e3 StoreInst should store Align, not MaybeAlign
This is D77454, except for stores.  All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.

Differential Revision: https://reviews.llvm.org/D79968
2020-05-15 12:26:58 -07:00
Eli Friedman accc6b5545 LoadInst should store Align, not MaybeAlign.
The fact that loads and stores can have the alignment missing is a
constant source of confusion: code that usually works can break down in
rare cases.  So fix the LoadInst API so the alignment is never missing.

To reduce the number of changes required to make this work, IRBuilder
and certain LoadInst constructors will grab the module's datalayout and
compute the alignment automatically.  This is the same alignment
instcombine would eventually apply anyway; we're just doing it earlier.
There's a minor risk that the way we're retrieving the datalayout
could break out-of-tree code, but I don't think that's likely.

This is the last in a series of patches, so most of the necessary
changes have already been merged.

Differential Revision: https://reviews.llvm.org/D77454
2020-05-14 13:19:21 -07:00