Commit Graph

2332 Commits

Author SHA1 Message Date
David Green 00a6601136 [VPlan] Turn VPReductionRecipe into a VPValue
This converts the VPReductionRecipe into a VPValue, like other
VPRecipe's in preparation for traversing def-use chains. It also makes
it a VPUser, now storing the used VPValues as operands.

It doesn't yet change how the VPReductionRecipes are created. It will
need to call replaceAllUsesWith from the original recipe they replace,
but that is not done yet as VPWidenRecipe need to be created first.

Differential Revision: https://reviews.llvm.org/D88382
2020-11-25 08:25:05 +00:00
Philip Reames 10ddb927c1 [SCEV] Use isa<> pattern for testing for CouldNotCompute [NFC]
Some older code - and code copied from older code - still directly tested against the singelton result of SE::getCouldNotCompute.  Using the isa<SCEVCouldNotCompute> form is both shorter, and more readable.
2020-11-24 18:47:49 -08:00
Philip Reames 075468621c [LoopVec] Add a minor clarifying comment 2020-11-24 10:45:06 -08:00
Ayal Zaks 32d9a386bf [LV] Keep Primary Induction alive when folding tail by masking
Fix PR47390.

The primary induction should be considered alive when folding tail by masking,
because it will be used by said masking; even when it may otherwise appear
useless: feeding only its own 'bump', which is correctly considered dead, and
as the 'bump' of another induction variable, which may wrongfully want to
consider its bump = the primary induction, dead.

Differential Revision: https://reviews.llvm.org/D92017
2020-11-24 15:12:54 +02:00
Philip Reames 1a9c72f8a8 [LoopVec] Reuse a lambda [NFC]
Minor code refactor to improve readability.
2020-11-23 21:07:34 -08:00
Philip Reames b06a2ad94f [LoopVectorizer] Lower uniform loads as a single load (instead of relying on CSE)
A uniform load is one which loads from a uniform address across all lanes. As currently implemented, we cost model such loads as if we did a single scalar load + a broadcast, but the actual lowering replicates the load once per lane.

This change tweaks the lowering to use the REPLICATE strategy by marking such loads (and the computation leading to their memory operand) as uniform after vectorization. This is a useful change in itself, but it's real purpose is to pave the way for a following change which will generalize our uniformity logic.

In review discussion, there was an issue raised with coupling cost modeling with the lowering strategy for uniform inputs.  The discussion on that item remains unsettled and is pending larger architectural discussion.  We decided to move forward with this patch as is, and revise as warranted once the bigger picture design questions are settled.

Differential Revision: https://reviews.llvm.org/D91398
2020-11-23 15:32:17 -08:00
Alexey Bataev 0b420d674a [SLP][NFC]Fix assert condition in newTreeEntry, NFC. 2020-11-20 13:25:21 -08:00
Hongtao Yu f3c445697d [CSSPGO] IR intrinsic for pseudo-probe block instrumentation
This change introduces a new IR intrinsic named `llvm.pseudoprobe` for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.

A pseudo probe is used to collect the execution count of the block where the probe is instrumented. This requires a pseudo probe to be persisting. The LLVM PGO instrumentation also instruments in similar places by placing a counter in the form of atomic read/write operations or runtime helper calls. While these operations are very persisting or optimization-resilient, in theory we can borrow the atomic read/write implementation from PGO counters and cut it off at the end of compilation with all the atomics converted into binary data. This was our initial design and we’ve seen promising sample correlation quality with it. However, the atomics approach has a couple issues:

1. IR Optimizations are blocked unexpectedly. Those atomic instructions are not going to be physically present in the binary code, but since they are on the IR till very end of compilation, they can still prevent certain IR optimizations and result in lower code quality.
2. The counter atomics may not be fully cleaned up from the code stream eventually.
3. Extra work is needed for re-targeting.

We choose to implement pseudo probes based on a special LLVM intrinsic, which is expected to have most of the semantics that comes with an atomic operation but does not block desired optimizations as much as possible. More specifically the semantics associated with the new intrinsic enforces a pseudo probe to be virtually executed exactly the same number of times before and after an IR optimization. The intrinsic also comes with certain flags that are carefully chosen so that the places they are probing are not going to be messed up by the optimizer while most of the IR optimizations still work. The core flags given to the special intrinsic is `IntrInaccessibleMemOnly`, which means the intrinsic accesses memory and does have a side effect so that it is not removable, but is does not access memory locations that are accessible by any original instructions. This way the intrinsic does not alias with any original instruction and thus it does not block optimizations as much as an atomic operation does. We also assign a function GUID and a block index to an intrinsic so that they are uniquely identified and not merged in order to achieve good correlation quality.

Let's now look at an example. Given the following LLVM IR:

```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
  %cmp = icmp eq i32 %x, 0
   br i1 %cmp, label %bb1, label %bb2
bb1:
   br label %bb3
bb2:
   br label %bb3
bb3:
   ret void
}
```

The instrumented IR will look like below. Note that each `llvm.pseudoprobe` intrinsic call represents a pseudo probe at a block, of which the first parameter is the GUID of the probe’s owner function and the second parameter is the probe’s ID.

```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
   %cmp = icmp eq i32 %x, 0
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
   br i1 %cmp, label %bb1, label %bb2
bb1:
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
   br label %bb3
bb2:
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
   br label %bb3
bb3:
   call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
   ret void
}

```

Reviewed By: wmi

Differential Revision: https://reviews.llvm.org/D86490
2020-11-20 10:39:24 -08:00
Sander de Smalen 41c9f4c1ce [LoopVectorize] NFC: Fix unused variable warning for MaxSafeDepDist
rGf571fe6df585127d8b045f8e8f5b4e59da9bbb73 led to a warning of an unused
variable for MaxSafeDepDist (written but not used). It seems this
variable and assignment can be safely removed.
2020-11-19 17:41:35 +00:00
Simon Moll a1de391dae [LV][NFC-ish] Allow vector widths over 256 elements
The assertion that vector widths are <= 256 elements was hard wired in the LV code. Eg, VE allows for vectors up to 512 elements. Test again the TTI vector register bit width instead - this is an NFC for non-asserting builds.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D91518
2020-11-19 10:58:29 +01:00
Benjamin Kramer 4dbe12e866 [SLP] Use the minimum alignment of the load bundle when forming a masked.gather
Instead of the first load. That works when vectorizing contiguous loads,
but not for gathers.

Fixes a miscompile introduced in fcad8d3635.
2020-11-18 12:53:39 +01:00
Sanjay Patel 08834979e3 [SLP] avoid unreachable code crash/infloop
Example based on the post-commit comments for D88735.
2020-11-17 15:10:23 -05:00
Florian Hahn 52f3714dae [VPlan] Add VPDef class.
This patch introduces a new VPDef class, which can be used to
manage VPValues defined by recipes/VPInstructions.

The idea here is to mirror VPUser for values defined by a recipe. A
VPDef can produce either zero (e.g. a store recipe), one (most recipes)
or multiple (VPInterleaveRecipe) result VPValues.

To traverse the def-use chain from a VPDef to its users, one has to
traverse the users of all values defined by a VPDef.

VPValues now contain a pointer to their corresponding VPDef, if one
exists. To traverse the def-use chain upwards from a VPValue, we first
need to check if the VPValue is defined by a VPDef. If it does not have
a VPDef, this means we have a VPValue that is not directly defined
iniside the plan and we are done.

If we have a VPDef, it is defined inside the region by a recipe, which
is a VPUser, and the upwards def-use chain traversal continues by
traversing all its operands.

Note that we need to add an additional field to to VPVAlue to link them
to their defs. The space increase is going to be offset by being able to
remove the SubclassID field in future patches.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D90558
2020-11-17 16:18:11 +00:00
Anton Afanasyev 0a1d315f9f [SLPVectorizer] Fix assert 2020-11-17 18:46:31 +03:00
Anton Afanasyev fcad8d3635 [SLP] Make SLPVectorizer to use `llvm.masked.gather` intrinsic
For the scattered operands of load instructions it makes sense
to use gathering load intrinsic, which can lower to native instruction
for X86/AVX512 and ARM/SVE. This also enables building
vectorization tree with entries containing scattered operands.
The next step is to add scattered store.

Fixes PR47629 and PR47623

Differential Revision: https://reviews.llvm.org/D90445
2020-11-17 18:11:45 +03:00
Sander de Smalen f571fe6df5 Reland [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This relands https://reviews.llvm.org/D91059 and reverts commit
30fded75b4.

GetRegUsage now returns 0 when Ty is not a valid vector element type.
2020-11-17 13:45:10 +00:00
Philip Reames 2240d3d054 [LoopVec] Introduce an api for detecting uniform memory ops
Split off D91398 at request of reviewer.
2020-11-16 13:30:48 -08:00
Florian Hahn 0c119ba8a8 [VPlan] Use VPValue def for VPWidenGEPRecipe.
This patch turns VPWidenGEPRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84683
2020-11-15 15:12:47 +00:00
Florian Hahn a70b511e78 Recommit "[VPlan] Use VPValue def for VPWidenSelectRecipe."
This reverts the revert commit c8d73d939f.

It includes a fix for cases where we missed inserting VPValues
for some selects, which should fix PR48142.
2020-11-14 20:00:25 +00:00
serge-sans-paille 9218ff50f9 llvmbuildectomy - replace llvm-build by plain cmake
No longer rely on an external tool to build the llvm component layout.

Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.

These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.

Differential Revision: https://reviews.llvm.org/D90848
2020-11-13 10:35:24 +01:00
Sander de Smalen 30fded75b4 Revert "[LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost."
This reverts commits:
* [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
  b873aba394.
* [LoopVectorizer] Silence warning in GetRegUsage.
  9ff701100a.
2020-11-11 14:41:55 +00:00
Sander de Smalen 9ff701100a [LoopVectorizer] Silence warning in GetRegUsage.
This patch silences the warning:
	error: lambda capture 'DL' is not used [-Werror,-Wunused-lambda-capture]
	  auto GetRegUsage = [&DL, &TTI=TTI](Type *Ty, ElementCount VF) {
	                      ~^~~
	1 error generated.

Introduced in:
  https://reviews.llvm.org/rGb873aba3943c067a5efd5303cbdf5aeb0732cf88
2020-11-11 10:54:20 +00:00
Sander de Smalen b873aba394 [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
This is more accurate than dividing the bitwidth based on the element count by the
maximum register size, as it can just reuse whatever has been calculated for
legalization of these types.

This change is also necessary when calculating register usage for scalable vectors, where
the legalization of these types cannot be done based on the widest register size, because
that does not take the 'vscale' component into account.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D91059
2020-11-11 10:18:50 +00:00
Sander de Smalen 0141f5a49d [LoopVectorizer] NFC: Return ElementCount from compute[Feasible]MaxVF
Interfaces changed to return `ElementCount`:
* LoopVectorizationCostModel::computeMaxVF
* LoopVectorizationCostModel::computeFeasibleMaxVF

This is NFC for fixed-width vectors.

Reviewed By: dmgreen, ctetreau

Differential Revision: https://reviews.llvm.org/D90880
2020-11-11 09:55:06 +00:00
Florian Hahn c8d73d939f Revert "[VPlan] Use VPValue def for VPWidenSelectRecipe."
This reverts commit a8e50f1c6e.

This reportedly breaks building the Linux kernel.
  https://bugs.llvm.org/show_bug.cgi?id=48142
2020-11-10 22:50:46 +00:00
Florian Hahn a8e50f1c6e
[VPlan] Use VPValue def for VPWidenSelectRecipe.
This patch turns VPWidenSelectRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84682
2020-11-10 19:39:37 +00:00
Sander de Smalen f47573f9bf [LoopVectorizer] NFC: Propagate ElementCount to more interfaces.
Interfaces changed to take `ElementCount` as parameters:
* LoopVectorizationPlanner::buildVPlans
* LoopVectorizationPlanner::buildVPlansWithVPRecipes
* LoopVectorizationCostModel::selectVectorizationFactor

This patch is NFC for fixed-width vectors.

Reviewed By: dmgreen, ctetreau

Differential Revision: https://reviews.llvm.org/D90879
2020-11-10 11:11:02 +00:00
Florian Hahn f0d76275cb
[VPlan] Print result value for loads in VPWidenMemoryInst (NFC).
For loads, print the result value.
2020-11-09 14:01:29 +00:00
Florian Hahn 537829f2a7
[VPlan] Add isStore helper to VPWidenMemoryInstructionRecipe (NFC).
Move logic to check if the recipe is a store to a helper for easier
reuse.
2020-11-09 14:01:29 +00:00
Florian Hahn fec64de261
[VPlan] Use VPValue def for VPWidenCall.
This patch turns VPWidenCall into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84681
2020-11-09 13:29:41 +00:00
Florian Hahn 091c5c9a18
[VPlan] Add printOperands helper to VPUser (NFC).
Factor out the code for printing operands of a VPUser so it can be
re-used when printing other recipes.
2020-11-09 12:30:57 +00:00
Florian Hahn d8d1cc647d [SLP] Also try to vectorize incoming values of PHIs .
Currently we do not consider incoming values of PHIs as roots for SLP
vectorization. This means we miss scenarios like the one in the test
case and PR47670.

It appears quite straight-forward to consider incoming values of PHIs as
roots for vectorization, but I might be missing something that makes
this problematic.

In terms of vectorized instructions, this applies to quite a few
benchmarks across MultiSource/SPEC2000/SPEC2006 on X86 with -O3 -flto

    Same hash: 185 (filtered out)
    Remaining: 52
    Metric: SLP.NumVectorInstructions

    Program                                        base    patch   diff
     test-suite...ProxyApps-C++/HPCCG/HPCCG.test     9.00   27.00  200.0%
     test-suite...C/CFP2000/179.art/179.art.test     8.00   22.00  175.0%
     test-suite...T2006/458.sjeng/458.sjeng.test    14.00   30.00  114.3%
     test-suite...ce/Benchmarks/PAQ8p/paq8p.test    11.00   18.00  63.6%
     test-suite...s/FreeBench/neural/neural.test    12.00   18.00  50.0%
     test-suite...rimaran/enc-3des/enc-3des.test    65.00   95.00  46.2%
     test-suite...006/450.soplex/450.soplex.test    63.00   89.00  41.3%
     test-suite...ProxyApps-C++/CLAMR/CLAMR.test   177.00  250.00  41.2%
     test-suite...nchmarks/McCat/18-imp/imp.test    13.00   18.00  38.5%
     test-suite.../Applications/sgefa/sgefa.test    26.00   35.00  34.6%
     test-suite...pplications/oggenc/oggenc.test   100.00  133.00  33.0%
     test-suite...6/482.sphinx3/482.sphinx3.test   103.00  134.00  30.1%
     test-suite...oxyApps-C++/miniFE/miniFE.test   169.00  213.00  26.0%
     test-suite.../Benchmarks/Olden/tsp/tsp.test    59.00   73.00  23.7%
     test-suite...TimberWolfMC/timberwolfmc.test   503.00  622.00  23.7%
     test-suite...T2006/456.hmmer/456.hmmer.test    65.00   79.00  21.5%
     test-suite...libquantum/462.libquantum.test    58.00   68.00  17.2%
     test-suite...ternal/HMMER/hmmcalibrate.test    84.00   98.00  16.7%
     test-suite...ications/JM/ldecod/ldecod.test   351.00  401.00  14.2%
     test-suite...arks/VersaBench/dbms/dbms.test    52.00   57.00   9.6%
     test-suite...ce/Benchmarks/Olden/bh/bh.test   118.00  128.00   8.5%
     test-suite.../Benchmarks/Bullet/bullet.test   6355.00 6880.00  8.3%
     test-suite...nsumer-lame/consumer-lame.test   480.00  519.00   8.1%
     test-suite...000/183.equake/183.equake.test   226.00  244.00   8.0%
     test-suite...chmarks/Olden/power/power.test   105.00  113.00   7.6%
     test-suite...6/471.omnetpp/471.omnetpp.test    92.00   99.00   7.6%
     test-suite...ications/JM/lencod/lencod.test   1173.00 1261.00  7.5%
     test-suite...0/253.perlbmk/253.perlbmk.test    55.00   59.00   7.3%
     test-suite...oxyApps-C/miniAMR/miniAMR.test    92.00   98.00   6.5%
     test-suite...chmarks/MallocBench/gs/gs.test   446.00  473.00   6.1%
     test-suite.../CINT2006/403.gcc/403.gcc.test   464.00  491.00   5.8%
     test-suite...6/464.h264ref/464.h264ref.test   998.00  1055.00  5.7%
     test-suite...006/453.povray/453.povray.test   5711.00 6007.00  5.2%
     test-suite...FreeBench/distray/distray.test   102.00  107.00   4.9%
     test-suite...:: External/Povray/povray.test   4184.00 4378.00  4.6%
     test-suite...DOE-ProxyApps-C/CoMD/CoMD.test   112.00  117.00   4.5%
     test-suite...T2006/445.gobmk/445.gobmk.test   104.00  108.00   3.8%
     test-suite...CI_Purple/SMG2000/smg2000.test   789.00  819.00   3.8%
     test-suite...yApps-C++/PENNANT/PENNANT.test   233.00  241.00   3.4%
     test-suite...marks/7zip/7zip-benchmark.test   417.00  428.00   2.6%
     test-suite...arks/mafft/pairlocalalign.test   627.00  643.00   2.6%
     test-suite.../Benchmarks/nbench/nbench.test   259.00  265.00   2.3%
     test-suite...006/447.dealII/447.dealII.test   4641.00 4732.00  2.0%
     test-suite...lications/ClamAV/clamscan.test   106.00  108.00   1.9%
     test-suite...CFP2000/177.mesa/177.mesa.test   1639.00 1664.00  1.5%
     test-suite...oxyApps-C/RSBench/rsbench.test    66.00   65.00  -1.5%
     test-suite.../CINT2000/252.eon/252.eon.test   3416.00 3444.00  0.8%
     test-suite...CFP2000/188.ammp/188.ammp.test   1846.00 1861.00  0.8%
     test-suite.../CINT2000/176.gcc/176.gcc.test   152.00  153.00   0.7%
     test-suite...CFP2006/444.namd/444.namd.test   3528.00 3544.00  0.5%
     test-suite...T2006/473.astar/473.astar.test    98.00   98.00   0.0%
     test-suite...frame_layout/frame_layout.test    NaN     39.00   nan%

On ARM64, there appears to be a slight regression on SPEC2006, which
might be interesting to investigate:

   test-suite...T2006/473.astar/473.astar.test   0.9%

Reviewed By: ABataev

Differential Revision: https://reviews.llvm.org/D88735
2020-11-06 12:50:32 +00:00
Sander de Smalen 4a3bb9ea6c [VPlan] NFC: Change VFRange to take ElementCount
This patch changes the type of Start, End in VFRange to be an ElementCount
instead of `unsigned`. This is done as preparation to make VPlans for
scalable vectors, but is otherwise NFC.

Reviewed By: dmgreen, fhahn, vkmr

Differential Revision: https://reviews.llvm.org/D90715
2020-11-06 09:50:20 +00:00
Florian Hahn d9cbf39a37 [SLP] Pass VecPred argument to getCmpSelInstrCost.
Check if all compares in VL have the same predicate and pass it to
getCmpSelInstrCost, to improve cost-modeling on targets that only
support compare/select combinations for certain uniform predicates.

This leads to additional vectorization in some cases

```
Same hash: 217 (filtered out)
Remaining: 19
Metric: SLP.NumVectorInstructions

Program                                        base    slp2    diff
 test-suite...marks/SciMark2-C/scimark2.test    11.00   26.00  136.4%
 test-suite...T2006/445.gobmk/445.gobmk.test    79.00  135.00  70.9%
 test-suite...ediabench/gsm/toast/toast.test    54.00   71.00  31.5%
 test-suite...telecomm-gsm/telecomm-gsm.test    54.00   71.00  31.5%
 test-suite...CI_Purple/SMG2000/smg2000.test   426.00  542.00  27.2%
 test-suite...ch/g721/g721encode/encode.test    30.00   24.00  -20.0%
 test-suite...000/186.crafty/186.crafty.test   116.00  138.00  19.0%
 test-suite...ications/JM/ldecod/ldecod.test   697.00  765.00   9.8%
 test-suite...6/464.h264ref/464.h264ref.test   822.00  886.00   7.8%
 test-suite...chmarks/MallocBench/gs/gs.test   154.00  162.00   5.2%
 test-suite...nsumer-lame/consumer-lame.test   621.00  651.00   4.8%
 test-suite...lications/ClamAV/clamscan.test   223.00  231.00   3.6%
 test-suite...marks/7zip/7zip-benchmark.test   680.00  695.00   2.2%
 test-suite...CFP2000/177.mesa/177.mesa.test   2121.00 2129.00  0.4%
 test-suite...:: External/Povray/povray.test   2406.00 2412.00  0.2%
 test-suite...TimberWolfMC/timberwolfmc.test   634.00  634.00   0.0%
 test-suite...CFP2006/433.milc/433.milc.test   1036.00 1036.00  0.0%
 test-suite.../Benchmarks/nbench/nbench.test   321.00  321.00   0.0%
 test-suite...ctions-flt/Reductions-flt.test    NaN      5.00   nan%
```

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D90124
2020-11-03 10:16:43 +00:00
Florian Hahn b3b993a7ad Reland "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts the revert commit 408c4408fa.

This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.

Original message:

On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
2020-11-02 15:39:29 +00:00
Florian Hahn ca38652b9a [VPlan] Assert no users remaining when deleting a VPValue.
When deleting a VPValue, all users must already by deleted. Add an
assertion to make sure and catch violations.
2020-11-01 17:44:53 +00:00
Florian Hahn 799033d8c5 Reland "[SLP] Consider alternatives for cost of select instructions."
This reverts the revert commit a1b53db324.

This patch includes a fix for a reported issue, caused by
matchSelectPattern returning UMIN for selects of pointers in
some cases by looking to some connected casts.

For now, ensure integer instrinsics are only returned for selects of
ints or int vectors.
2020-10-31 16:52:36 +00:00
Florian Hahn a1b53db324 Revert "[SLP] Consider alternatives for cost of select instructions."
This reverts commit 1922570489.

This appears to cause a crash in the following example

 a, b, c;
 l() {
   int e = a, f = l, g, h, i, j;
   float *d = c, *k = b;
   for (;;)
     for (; g < f; g++) {
       k[h] = d[i];
       k[h - 1] = d[j];
       h += e << 1;
       i += e;
     }
 }

 clang -cc1 -triple i386-unknown-linux-gnu -emit-obj -target-cpu pentium-m -O1 -vectorize-loops -vectorize-slp reduced.c

 llvm::Type *llvm::Type::getWithNewBitWidth(unsigned int) const: Assertion `isIntOrIntVectorTy() && "Original type expected to be a vector of integers or a scalar integer."' failed.
2020-10-30 21:26:14 +00:00
Florian Hahn 408c4408fa Revert "[TTI] Add VecPred argument to getCmpSelInstrCost."
This reverts commit 73f01e3df5.

This appears to break
http://lab.llvm.org:8011/#/builders/85/builds/383.
2020-10-30 21:26:14 +00:00
Florian Hahn aa1a198a64 [VPlan] Use isa<> instead getVPRecipeID in getFirstNonPhi (NFC).
As per the comment in VPRecipeBase, clients should not rely on
getVPRecipeID, as it may change in the future. It should only be used in
classof implementations. Use isa instead in getFirstNonPhi.
2020-10-30 14:56:06 +00:00
Florian Hahn 73f01e3df5 [TTI] Add VecPred argument to getCmpSelInstrCost.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.

This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.

This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.

I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.

Reviewed By: dmgreen, RKSimon

Differential Revision: https://reviews.llvm.org/D90070
2020-10-30 13:49:08 +00:00
Florian Hahn 1922570489 [SLP] Consider alternatives for cost of select instructions.
Some architectures do not have general vector select instructions (e.g.
AArch64). But some cmp/select patterns can be vectorized using other
instructions/intrinsics.

One example is using min/max instructions for certain patterns.

This patch updates the cost calculations for selects in the SLP
vectorizer to consider using min/max intrinsics.

This patch does not change SLP vectorizer's codegen itself to actually
generate those intrinsics, but relies on the backends to lower the
vector cmps & selects. This keeps things simple on the SLP side and
works well in practice for AArch64.

This exposes additional SLP vectorization opportunities in some
benchmarks on AArch64 (-O3 -flto).

Metric: SLP.NumVectorInstructions

Program                                        base    slp     diff
 test-suite...ications/JM/ldecod/ldecod.test   502.00  697.00  38.8%
 test-suite...ications/JM/lencod/lencod.test   1023.00 1414.00 38.2%
 test-suite...-typeset/consumer-typeset.test    56.00   65.00  16.1%
 test-suite...6/464.h264ref/464.h264ref.test   804.00  822.00   2.2%
 test-suite...006/453.povray/453.povray.test   3335.00 3357.00  0.7%
 test-suite...CFP2000/177.mesa/177.mesa.test   2110.00 2121.00  0.5%
 test-suite...:: External/Povray/povray.test   2378.00 2382.00  0.2%

Reviewed By: RKSimon, samparker

Differential Revision: https://reviews.llvm.org/D89969
2020-10-29 20:39:50 +00:00
Nicolai Hähnle e025d09b21 Revert multiple patches based on "Introduce CfgTraits abstraction"
These logically belong together since it's a base commit plus
followup fixes to less common build configurations.

The patches are:

Revert "CfgInterface: rename interface() to getInterface()"

This reverts commit a74fc48158.

Revert "Wrap CfgTraitsFor in namespace llvm to please GCC 5"

This reverts commit f2a06875b6.

Revert "Try to make GCC5 happy about the CfgTraits thing"

This reverts commit 03a5f7ce12.

Revert "Introduce CfgTraits abstraction"

This reverts commit c0cdd22c72.
2020-10-27 20:33:30 +01:00
Joe Ellis 467e5cf40f [SVE][AArch64] Fix TypeSize warning in loop vectorization legality
The warning would fire when calling isDereferenceableAndAlignedInLoop
with a scalable load. Calling isDereferenceableAndAlignedInLoop with a
scalable load would result in the use of the now deprecated implicit
cast of TypeSize to uint64_t through the overloaded operator.

This patch fixes this issue by:

- no longer considering vector loads as candidates in
  canVectorizeWithIfConvert. This doesn't make sense in the context of
  identifying scalar loads to vectorize.

- making use of getFixedSize inside isDereferenceableAndAlignedInLoop --
  this removes the dependency on the deprecated interface, and will
  trigger an assertion error if the function is ever called with a
  scalable type.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D89798
2020-10-26 17:40:04 +00:00
Nicolai Hähnle c0cdd22c72 Introduce CfgTraits abstraction
The CfgTraits abstraction simplfies writing algorithms that are
generic over the type of CFG, and enables writing such algorithms
as regular non-template code that operates on opaque references
to CFG blocks and values.

Implementations of CfgTraits provide operations on the concrete
CFG types, e.g. `IrCfgTraits::BlockRef` is `BasicBlock *`.

CfgInterface is an abstract base class which provides operations
on opaque types CfgBlockRef and CfgValueRef. Those opaque types
encapsulate a `void *`, but the meaning depends on the concrete
CFG type. For example, MachineCfgTraits -- for use with MachineIR
in SSA form -- encodes a Register inside CfgValueRef. Converting
between concrete references and opaque/generic ones is done by
CfgTraits::{fromGeneric,toGeneric}. Convenience methods
CfgTraits::{un}wrap{Iterator,Range} are available as well.

Writing algorithms in terms of CfgInterface adds some overhead
(virtual method calls, plus in same cases it removes the
opportunity to inline iterators), but can be much more convenient
since generic algorithms can be written as non-templates.

This patch adds implementations of CfgTraits for all CFGs on
which dominator trees are calculated, so that the dominator
tree can be ported to this machinery. Only IrCfgTraits (LLVM IR)
and MachineCfgTraits (Machine IR in SSA form) are complete, the
other implementations are limited to the absolute minimum
required to make the upcoming dominator tree changes work.

v5:
- fix MachineCfgTraits::blockdef_iterator and allow it to iterate over
  the instructions in a bundle
- use MachineBasicBlock::printName

v6:
- implement predecessors/successors for all CfgTraits implementations
- fix error in unwrapRange
- rename toGeneric/fromGeneric into wrapRef/unwrapRef to have naming
  that is consistent with {wrap,unwrap}{Iterator,Range}
- use getVRegDef instead of getUniqueVRegDef

v7:
- std::forward fix in wrapping_iterator
- fix typos

v8:
- cleanup operators on CfgOpaqueType
- address other review comments

Change-Id: Ia75f4f268fded33fca11218a7d578c9aec1f3f4d

Differential Revision: https://reviews.llvm.org/D83088
2020-10-20 13:50:52 +02:00
Artem Belevich c36c0fabd1 [VectorCombine] Avoid crossing address space boundaries.
We can not bitcast pointers across different address spaces, and VectorCombine
should be careful when it attempts to find the original source of the loaded
data.

Differential Revision: https://reviews.llvm.org/D89577
2020-10-16 13:19:31 -07:00
Florian Hahn 89c0124273 [LoopVersion] Unify SCEVChecks and alias check handling (NFC).
This is an initial cleanup of the way LoopVersioning interacts with LAA.

Currently LoopVersioning has 2 ways of initializing things:

1. Passing LAI and passing UseLAIChecks = true
2. Passing UseLAIChecks = false, followed by calling setSCEVChecks and
   setAliasChecks.

Both ways of initializing lead to the same result and the duplication
seems more complicated than necessary.

This patch removes the UseLAIChecks flag from the constructor and the
setSCEVChecks & setAliasChecks helpers and move initialization
exclusively to the constructor.

This simplifies things, by providing a single way to initialize
LoopVersioning and reducing duplication.

Reviewed By: Meinersbur, lebedev.ri

Differential Revision: https://reviews.llvm.org/D84406
2020-10-15 22:02:17 +01:00
David Green 13ec3dd66f [LV] Add a getRecurrenceBinOp and make use of it. NFC 2020-10-15 18:21:41 +01:00
Florian Hahn 93f6c6b79c Recommit "[VPlan] Use VPValue def for VPMemoryInstructionRecipe."
This reverts the revert commit 710aceb645
and includes a fix for a memsan failure.

Original message:

    This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
    during VPlan construction and codegeneration instead of the plain IR
    reference where possible.
2020-10-14 17:41:23 +01:00
Evgeniy Brevnov d0c95808e5 [LV] Unroll factor is expected to be > 0
LV fails with assertion checking that UF > 0. We already set UF to 1 if it is 0 except the case when IC > MaxInterleaveCount. The fix is to set UF to 1 for that case as well.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D87679
2020-10-14 16:48:17 +07:00
Vitaly Buka 710aceb645 Revert "[VPlan] Use VPValue def for VPMemoryInstructionRecipe."
It introduced a memory leak.

This reverts commit 525b085a65.
2020-10-13 03:14:08 -07:00
Florian Hahn 525b085a65 [VPlan] Use VPValue def for VPMemoryInstructionRecipe.
This patch turns VPMemoryInstructionRecipe into a VPValue and uses it
during VPlan construction and codegeneration instead of the plain IR
reference where possible.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D84680
2020-10-12 18:02:33 +01:00
Florian Hahn ea058d289c [VPlan] Use operands for printing of VPWidenMemoryInstructionRecipe.
Now that operands of the recipe are managed through VPUser, we can
simplify the printing by just using the operands.
2020-10-12 16:51:54 +01:00
David Sherwood c5ba0d33cc [SVE] Make ElementCount and TypeSize use a new PolySize class
I have introduced a new template PolySize class, where the template
parameter determines the type of quantity, i.e. for an element
count this is just an unsigned value. The ElementCount class is
now just a simple derivation of PolySize<unsigned>, whereas TypeSize
is more complicated because it still needs to contain the uint64_t
cast operator, since there are still many places in the code that
rely upon this implicit cast. As such the class also still needs
some of it's own operators.

I've tried to minimise the amount of code in the base PolySize
class, which led to a couple of changes:

1. In some places we were relying on '==' operator comparisons
between ElementCounts and the scalar value 1. I didn't put this
operator in the new PolySize class, and thought it was actually
clearer to use the isScalar() function instead.
2. I removed the isByteSized function and replaced it with calls
to isKnownMultipleOf(8).

I've also renamed NextPowerOf2 to be coefficientNextPowerOf2 so
that it's more consistent with coefficientDivideBy.

Differential Revision: https://reviews.llvm.org/D88409
2020-10-12 08:23:38 +01:00
David Green be6e8e50f4 [LV] Tail folded inloop reductions.
This expands upon the inloop reductions added in e9761688e41cb9e976,
allowing them to be inserted into tail folded loops. Reductions are
generates with the form:

  x = select(mask, vecop, zero)
  v = vecreduce.add(x)
  c = add chain, v

Where zero here is chosen as the identity value for add reductions. The
backend is then expected to fold the select and the vecreduce into a
single predicated instruction.

Most of the code is fairly straight forward, except for the creation of
blockmasks which need to ensure they are created in dominance order. The
order they are added is altered to be after any phis, keeping the
requirements for the underlying IR.

Differential Revision: https://reviews.llvm.org/D84451
2020-10-11 16:58:34 +01:00
Simon Pilgrim 0716805c02 [SLP] optimizeGatherSequence - assert every Instruction in the worklist is non-null.
Fixes clang static analyzer warning.
2020-10-08 20:02:18 +01:00
David Green 498f89d188 [LV] Collect dead induction truncates
We currently collect the ICmp and Add from an induction variable,
marking them as dead so that vplan values are not created for them. This
extends that to include any single use trunk from the ICmp, which allows
the Add to more readily be removed too.

This can help with costing vplan nodes, as the ICmp and Add are more
reliably removed and are not double-counted.

Differential Revision: https://reviews.llvm.org/D88873
2020-10-08 08:28:58 +01:00
Florian Hahn 348d85a6c7 [VPlan] Clean up uses/operands on VPBB deletion.
Update the code responsible for deleting VPBBs and recipes to properly
update users and release operands.

This is another preparation for D84680 & following patches towards
enabling modeling def-use chains in VPlan.
2020-10-05 14:43:52 +01:00
Florian Hahn 357bbaab66 [VPlan] Add VPRecipeBase::toVPUser helper (NFC).
This adds a helper to convert a VPRecipeBase pointer to a VPUser, for
recipes that inherit from VPUser. Once VPRecipeBase directly inherits
from VPUser this helper can be removed.
2020-10-04 19:43:27 +01:00
Florian Hahn f5fe7abe8a [VPlan] Account for removed users in replaceAllUsesWith.
Make sure we do not iterate using an invalid iterator.

Another small fix/step towards traversing the def-use chains in VPlan.
2020-10-04 18:18:58 +01:00
Florian Hahn 82dcd383c4 [VPlan] Properly update users when updating operands.
When updating operands of a VPUser, we also have to adjust the list of
users for the new and old VPValues. This is required once we start
transitioning recipes to become VPValues.
2020-10-03 20:54:58 +01:00
Florian Hahn 0867a9e85a [VPlan] Use isa<> instead of directly checking VPRecipeID (NFC).
getVPRecipeID is intended to be only used in `classof` helpers. Instead
of checking it directly, use isa<> with the correct recipe type.
2020-10-02 17:47:35 +01:00
Florian Hahn d856365470 [VPlan] Change recipes to inherit from VPUser instead of a member var.
Now that VPUser is not inheriting from VPValue, we can take the next
step and turn the recipes that already manage their operands via VPUser
into VPUsers directly. This is another small step towards traversing
def-use chains in VPlan.

This is NFC with respect to the generated code, but makes the interface
more powerful.
2020-09-30 14:39:00 +01:00
Sanjay Patel 0a349d5827 [SLP] clean up - use 'const' and ArrayRef constructor; NFC
Follow-on tidying suggested in the post-commit review of 6a23668.
2020-09-24 15:31:07 -04:00
Craig Topper 03f22b08e2 [SLP] Remove LHS and RHS from OperationData.
These were only really used for 2 things. One was to check if the operand matches the phi if it exists. The other was for the createOp method to build the reduction.

For the first case we still have the operation we just need to know how to index its operands. So I've modified getLHS/getRHS to just use the opcode/kind to know how to find the right operands on an instruction that is now passed in.

For the other case we had to create an OperationData object to set the LHS/RHS values and copy the opcode/kind from another object. We would then just call createOp on that temporary object. Instead I've made LHS/RHS arguments to createOp and removed all these temporary objects.

Differential Revision: https://reviews.llvm.org/D88193
2020-09-24 10:57:11 -07:00
Craig Topper 7a3c643c35 [SLP] Make HorizontalReduction::getOperationData take an Instruction* instead of a Value*. NFCI
All of the callers already have an Instruction *. Many of them
from a dyn_cast.

Also update the OperationData constructor to use a Instruction&
to remove a dyn_cast and make it clear that the pointer is non-null.

Differential Revision: https://reviews.llvm.org/D88132
2020-09-23 10:51:03 -07:00
Simon Pilgrim 474dc33d07 Add missing namespace closure comment. NFCI.
Fixes clang-tidy llvm-namespace-comment warning.
2020-09-23 16:19:25 +01:00
Florian Hahn 31923f6b36 [VPlan] Disconnect VPValue and VPUser.
This refactors VPuser to not inherit from VPValue to facilitate
introducing operations that introduce multiple VPValues (e.g.
VPInterleaveRecipe).

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D84679
2020-09-23 14:44:31 +01:00
Alexey Bataev d6ac649ccd [SLP]Fix coding style, NFC. 2020-09-22 17:44:29 -04:00
Stefanos Baziotis 89c1e35f3c [LoopInfo] empty() -> isInnermost(), add isOutermost()
Differential Revision: https://reviews.llvm.org/D82895
2020-09-22 23:28:51 +03:00
Florian Hahn c671e34bf2 [VPlan] Add dump() helper to VPValue & VPRecipeBase.
This provides a convenient way to print VPValues and recipes in a
debugger. In particular it saves the user from instantiating
VPSlotTracker to print recipes or values.
2020-09-22 15:55:16 +01:00
Sanjay Patel 0c3bfbe4bc [SLP] reduce code duplication for checking parent block; NFC 2020-09-22 09:21:20 -04:00
Sanjay Patel bbd49a0266 [SLP] move misplaced code comments; NFC 2020-09-22 09:21:20 -04:00
Sanjay Patel 062276c691 [SLP] clean up code in gather(); NFC
1. Use range for-loop to avoid repeatedly accessing end index.
2. Better variable names.
2020-09-22 09:21:20 -04:00
Simon Pilgrim d682a36ef9 [SLP] Merge null and dyn_cast<> checks into dyn_cast_or_null<>. NFCI. 2020-09-22 14:01:47 +01:00
Sanjay Patel 7451bf0b0b [SLP] use std::distance/find to reduce code; NFC
We were already using this code pattern right after
the loop, so this makes it consistent.
2020-09-21 16:22:55 -04:00
Sanjay Patel be93505986 [LoopVectorize] use unary shuffle creator to reduce code duplication; NFC 2020-09-21 15:34:24 -04:00
Sanjay Patel a44238cb44 [SLP] use unary shuffle creator to reduce code duplication; NFC 2020-09-21 13:54:06 -04:00
Sanjay Patel 1e6b240d7d [IRBuilder][VectorCombine] make and use a convenience function for unary shuffle; NFC
This reduces code duplication for common construct.
Follow-ups can use this in SLP, LoopVectorizer, and other passes.
2020-09-21 13:47:01 -04:00
Simon Pilgrim 005f826a05 [SLP] Use for-range loops across ValueLists. NFCI.
Also rename some existing loops that used a 'j' iterator to consistently use 'V'.
2020-09-21 18:24:23 +01:00
Sanjay Patel 46075e0b78 [SLP] simplify interface for gather(); NFC
The implementation of gather() should be reduced too,
but this change by itself makes things a little clearer:
we don't try to gather to a different type or
number-of-values than whatever is passed in as the value
list itself.
2020-09-21 12:57:28 -04:00
Simon Pilgrim 3ddecfd220 SLPVectorizer.cpp - fix include ordering. NFCI. 2020-09-21 17:17:11 +01:00
Alexey Bataev 3ff07fcd54 [SLP] Allow reordering of vectorization trees with reused instructions.
If some leaves have the same instructions to be vectorized, we may
incorrectly evaluate the best order for the root node (it is built for the
vector of instructions without repeated instructions and, thus, has less
elements than the root node). In this case we just can not try to reorder
the tree + we may calculate the wrong number of nodes that requre the
same reordering.
For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
be reordered, the best order will be \<1, 0\>. We need to extend this
order for the root node. For the root node this order should look like
\<3, 0, 1, 2\>. This patch allows extension of the orders of the nodes
with the reused instructions.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D45263
2020-09-21 10:51:03 -04:00
Fangrui Song 6913812abc Fix some clang-tidy bugprone-argument-comment issues 2020-09-19 20:41:25 -07:00
Eric Christopher ecfd8161bf Temporarily Revert "[SLP] Allow reordering of vectorization trees with reused instructions."
as it's infinite looping on occasion.

This reverts commit 455ca0ebb6.
2020-09-18 12:50:04 -07:00
Alexey Bataev 455ca0ebb6 [SLP] Allow reordering of vectorization trees with reused instructions.
If some leaves have the same instructions to be vectorized, we may
incorrectly evaluate the best order for the root node (it is built for the
vector of instructions without repeated instructions and, thus, has less
elements than the root node). In this case we just can not try to reorder
the tree + we may calculate the wrong number of nodes that requre the
same reordering.
For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
be reordered, the best order will be \<1, 0\>. We need to extend this
order for the root node. For the root node this order should look like
\<3, 0, 1, 2\>. This patch allows extension of the orders of the nodes
with the reused instructions.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D45263
2020-09-18 09:34:59 -04:00
Sanjay Patel 48a23bccf3 [VectorCombine] limit load+insert transform to one-use
As discussed in:
https://llvm.org/PR47558
...there are several potential fixes/follow-ups visible
in the test case, but this is the quickest and safest
fix of the perf regression.
2020-09-17 14:29:15 -04:00
Sanjay Patel ddd9575d15 [VectorCombine] rearrange bailouts for load insert for efficiency; NFC 2020-09-17 13:50:37 -04:00
Sanjay Patel 03783f19dc [SLP] sort candidates to increase chance of optimal compare reduction
This is one (small) part of improving PR41312:
https://llvm.org/PR41312

As shown there and in the smaller tests here, if we have some member of the
reduction values that does not match the others, we want to push it to the
end (bring the matching members forward and together).

In the regression tests, we have 5 candidates for the 4 slots of the reduction.
If the one "wrong" compare is grouped with the others, it prevents forming the
ideal v4i1 compare reduction.

Differential Revision: https://reviews.llvm.org/D87772
2020-09-17 08:49:27 -04:00
Sanjay Patel 24238f09ed [SLP] fix formatting; NFC
Also move variable declarations closer to usage and add code comments.
2020-09-16 08:50:27 -04:00
Sanjay Patel 6a23668e78 [SLP] remove uses of 'auto' that obscure functionality; NFC 2020-09-16 08:26:21 -04:00
Sanjay Patel 0cee1bf5d1 [SLP] remove redundant size check; NFC
We bail out on small array size anyway.
2020-09-16 08:11:19 -04:00
Sanjay Patel bbad998bab [SLP] move loop index variable declaration to its use; NFC 2020-09-16 07:59:31 -04:00
Sanjay Patel 158989184e [SLP] change poorly named variable; NFC
'V' shadows a function argument.
2020-09-16 07:59:31 -04:00
Wenlei He 2ea4c2c598 [BFI] Make BFI information available through loop passes inside LoopStandardAnalysisResults
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~

~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~

~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~

~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~

See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .

This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.

Testing
Ninja check

Reviewed By: asbirlea, nikic

Differential Revision: https://reviews.llvm.org/D86156
2020-09-15 16:16:24 -07:00
Huihui Zhang 3b7f5166bd [SLPVectorizer][SVE] Skip scalable-vector instructions before vectorizeSimpleInstructions.
For scalable type, the aggregated size is unknown at compile-time.
Skip instructions with scalable type to ensure the list of instructions
for vectorizeSimpleInstructions does not contains any scalable-vector instructions.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D87550
2020-09-15 13:10:15 -07:00
Fangrui Song 4452cc4086 [VectorCombine] Don't vectorize scalar load under asan/hwasan/memtag/tsan
Similar to the tsan suppression in
`Utils/VNCoercion.cpp:getLoadLoadClobberFullWidthSize` (rL175034; load widening used by GVN),
the D81766 optimization should be suppressed under tsan due to potential
spurious data race reports:

  struct A {
    int i;
    const short s; // the load cannot be vectorized because
    int modify;    // it overlaps with bytes being concurrently modified
    long pad1, pad2;
  };
  // __tsan_read16 does not know that some bytes are undef and accessing is safe

Similarly, under asan, users can mark memory regions with
`__asan_poison_memory_region`. A widened load can lead to a spurious
use-after-poison error. hwasan/memtag should be similarly suppressed.

`mustSuppressSpeculation` suppresses asan/hwasan/tsan but not memtag, so
we need to exclude memtag in `vectorizeLoadInsert`.

Note, memtag suppression can be relaxed if the load is aligned to the
its granule (usually 16), but that is out of scope of this patch.

Reviewed By: spatel, vitalybuka

Differential Revision: https://reviews.llvm.org/D87538
2020-09-15 09:47:21 -07:00
Simon Pilgrim 2b42d53e5e SLPVectorizer.h - remove unnecessary AliasAnalysis.h include. NFCI.
Forward declare AAResults instead of the (old) AliasAnalysis type.

Remove includes from SLPVectorizer.cpp that are already included in SLPVectorizer.h.
2020-09-15 16:24:05 +01:00
David Green 74760bb00f [LV][ARM] Add preferInloopReduction target hook.
This allows the backend to tell the vectorizer to produce inloop
reductions through a TTI hook.

For the moment on ARM under MVE this means allowing integer add
reductions of the correct size. In the future this can include integer
min/max too, under -Os.

Differential Revision: https://reviews.llvm.org/D75512
2020-09-12 17:47:04 +01:00
Sanjay Patel 40f12ef621 [SLP] further limit bailout for load combine candidate (PR47450)
The test example based on PR47450 shows that we can
match non-byte-sized shifts, but those won't ever be
bswap opportunities. This isn't a full fix (we'd still
match if the shifts were by 8-bits for example), but
this should be enough until there's evidence that we
need to do more (this is a borderline case for
vectorization in the first place).
2020-09-11 11:56:11 -04:00
Craig Topper c195ae2f00 [SLPVectorizer][X86][AMDGPU] Remove fcmp+select to fmin/fmax reduction support.
Previously we could match fcmp+select to a reduction if the fcmp had
the nonans fast math flag. But if the select had the nonans fast
math flag, InstCombine would turn it into a fminnum/fmaxnum intrinsic
before SLP gets to it. Seems fairly likely that if one of the
fcmp+select pair have the fast math flag, they both would.

My plan is to start vectorizing the fmaxnum/fminnum version soon,
but I wanted to get this code out as it had some of the strangest
fast math flag behaviors.
2020-09-10 11:49:19 -07:00
Simon Pilgrim 5ea9e655ef VPlan.h - remove unnecessary forward declarations. NFCI.
Already defined in includes.
2020-09-07 18:35:06 +01:00
Huihui Zhang b4f04d7135 [VectorCombine][SVE] Do not fold bitcast shuffle for scalable type.
First, shuffle cost for scalable type is not known for scalable type;
Second, we cannot reason if the narrowed shuffle mask for scalable type
is a splat or not.

E.g., Bitcast splat vector from type <vscale x 4 x i32> to <vscale x 8 x i16>
will involve narrowing shuffle mask <vscale x 4 x i32> zeroinitializer to
<vscale x 8 x i32> with element sequence of <0, 1, 0, 1, ...>, which cannot be
reasoned if it's a valid splat or not.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D86995
2020-09-02 15:02:16 -07:00
Sanjay Patel 8fb055932c [VectorCombine] allow vector loads with mismatched insert type
This is an enhancement to D81766 to allow loading the minimum target
vector type into an IR vector with a different number of elements.

In one of the motivating tests from PR16739, SLP creates <2 x float>
load ops mixed with <4 x float> insert ops, so we want to handle that
pattern in addition to potential oversized vectors created by the
vectorizers.

For now, we are assuming the insert/extract subvector with undef is
free because there is no exact corresponding TTI modeling for that.

Differential Revision: https://reviews.llvm.org/D86160
2020-09-02 08:11:36 -04:00
Aaron Liu d7e16ca28f [LV] Interleave to expose ILP for small loops with scalar reductions.
Interleave for small loops that have reductions inside,
which breaks dependencies and expose.

This gives very significant performance improvements for some benchmarks.
Because small loops could be in very hot functions in real applications.

Differential Revision: https://reviews.llvm.org/D81416
2020-09-01 19:47:32 +00:00
Florian Hahn eb35ebb3a2 [LV] Update CFG before adding runtime checks.
addRuntimeChecks uses SCEVExpander, which relies on the DT/LoopInfo to
be up-to-date. Changing the CFG afterwards may invalidate some inserted
instructions, especially LCSSA phis.

Reorder the code to first update the CFG and then create the runtime
checks. This should not have any impact on the generated code, as we
adjust the CFG and generate runtime checks together.

Fixes PR47343.
2020-08-30 18:21:44 +01:00
Sanjay Patel af4581e8ab [SLP] make commutative check apply only to binops; NFC
As discussed in D86798, it's not clear if the caller code
works with a more liberal definition of "commutative" that
includes intrinsics like min/max. This makes the binop
restriction (current functionality is unchanged) explicit
until the code is audited/tested.
2020-08-30 10:55:44 -04:00
David Green 543c5425f1 [LV] Add some const to RecurrenceDescriptor. NFC 2020-08-30 12:27:51 +01:00
Florian Hahn 5067f4b626 [LV] Check opt-for-size before expanding runtime checks.
Move bail out when optimizing for size before runtime check generation.
In that case, we do not use the result of the expansion, the expanded
instruction will be dead and cleaned up later.

By doing the check before expanding the runtime-checks, we can save a
bit of unnecessary work.
2020-08-29 20:35:14 +01:00
David Sherwood f4257c5832 [SVE] Make ElementCount members private
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().

Differential Revision: https://reviews.llvm.org/D86065
2020-08-28 14:43:53 +01:00
Christopher Tetreault 5e63083435 [SVE] Remove calls to VectorType::getNumElements from Transforms/Vectorize
Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D82056
2020-08-27 12:02:20 -07:00
Sjoerd Meijer bda8fbe2d2 [LV] Fallback strategies if tail-folding fails
This implements 2 different vectorisation fallback strategies if tail-folding
fails: 1) don't vectorise at all, or 2) vectorise using a scalar epilogue. This
can be controlled with option -prefer-predicate-over-epilogue, that has been
changed to take a numeric value corresponding to the tail-folding preference
and preferred fallback.

Patch by: Pierre van Houtryve, Sjoerd Meijer.

Differential Revision: https://reviews.llvm.org/D79783
2020-08-26 16:55:25 +01:00
Sjoerd Meijer ae366479e8 [LV] get.active.lane.mask consuming tripcount instead of backedge-taken count
This adapts LV to the new semantics of get.active.lane.mask as discussed in
D86147, which means that the LV now emits intrinsic get.active.lane.mask with
the loop tripcount instead of the backedge-taken count as its second argument.
The motivation for this is described in D86147.

Differential Revision: https://reviews.llvm.org/D86304
2020-08-25 13:49:19 +01:00
Francesco Petrogalli 5a34b3ab95 [llvm][LV] Replace `unsigned VF` with `ElementCount VF` [NFCI]
Changes:

* Change `ToVectorTy` to deal directly with `ElementCount` instances.
* `VF == 1` replaced with `VF.isScalar()`.
* `VF > 1` and `VF >=2` replaced with `VF.isVector()`.
* `VF <=1` is replaced with `VF.isZero() || VF.isScalar()`.
* Replaced the uses of `llvm::SmallSet<ElementCount, ...>` with
   `llvm::SmallSetVector<ElementCount, ...>`. This avoids the need of an
   ordering function for the `ElementCount` class.
* Bits and pieces around printing the `ElementCount` to string streams.

To guarantee that this change is a NFC, `VF.Min` and asserts are used
in the following places:

1. When it doesn't make sense to deal with the scalable property, for
example:
   a. When computing unrolling factors.
   b. When shuffle masks are built for fixed width vector types
In this cases, an
assert(!VF.Scalable && "<mgs>") has been added to make sure we don't
enter coepaths that don't make sense for scalable vectors.
2. When there is a conscious decision to use `FixedVectorType`. These
uses of `FixedVectorType` will likely be removed in favour of
`VectorType` once the vectorizer is generic enough to deal with both
fixed vector types and scalable vector types.
3. When dealing with building constants out of the value of VF, for
example when computing the vectorization `step`, or building vectors
of indices. These operation _make sense_ for scalable vectors too,
but changing the code in these places to be generic and make it work
for scalable vectors is to be submitted in a separate patch, as it is
a functional change.
4. When building the potential VFs in VPlan. Making the VPlan generic
enough to handle scalable vectorization factors is a functional change
that needs a separate patch. See for example `void
LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned
MaxVF)`.
5. The class `IntrinsicCostAttribute`: this class still uses `unsigned
VF` as updating the field to use `ElementCount` woudl require changes
that could result in changing the behavior of the compiler. Will be done
in a separate patch.
7. When dealing with user input for forcing the vectorization
factor. In this case, adding support for scalable vectorization is a
functional change that migh require changes at command line.

Note that in some places the idiom

```
unsigned VF = ...
auto VTy = FixedVectorType::get(ScalarTy, VF)
```

has been replaced with

```
ElementCount VF = ...
assert(!VF.Scalable && ...);
auto VTy = VectorType::get(ScalarTy, VF)
```

The assertion guarantees that the new code is (at least in debug mode)
functionally equivalent to the old version. Notice that this change had been
possible because none of the methods that are specific to `FixedVectorType`
were used after the instantiation of `VTy`.

Reviewed By: rengolin, ctetreau

Differential Revision: https://reviews.llvm.org/D85794
2020-08-24 13:54:03 +00:00
Francesco Petrogalli bad7d6b373 Revert "[llvm][LV] Replace `unsigned VF` with `ElementCount VF` [NFCI]"
Reverting because the commit message doesn't reflect the one agreed on
phabricator at https://reviews.llvm.org/D85794.

This reverts commit c8d2b065b9.
2020-08-24 13:50:55 +00:00
Francesco Petrogalli c8d2b065b9 [llvm][LV] Replace `unsigned VF` with `ElementCount VF` [NFCI]
Changes:

* Change `ToVectorTy` to deal directly with `ElementCount` instances.
* `VF == 1` replaced with `VF.isScalar()`.
* `VF > 1` and `VF >=2` replaced with `VF.isVector()`.
* `VF <=1` is replaced with `VF.isZero() || VF.isScalar()`.
* Add `<` operator to `ElementCount` to be able to use
`llvm::SmallSetVector<ElementCount, ...>`.
* Bits and pieces around printing the ElementCount to string streams.
* Added a static method to `ElementCount` to represent a scalar.

To guarantee that this change is a NFC, `VF.Min` and asserts are used
in the following places:

1. When it doesn't make sense to deal with the scalable property, for
example:
   a. When computing unrolling factors.
   b. When shuffle masks are built for fixed width vector types
In this cases, an
assert(!VF.Scalable && "<mgs>") has been added to make sure we don't
enter coepaths that don't make sense for scalable vectors.
2. When there is a conscious decision to use `FixedVectorType`. These
uses of `FixedVectorType` will likely be removed in favour of
`VectorType` once the vectorizer is generic enough to deal with both
fixed vector types and scalable vector types.
3. When dealing with building constants out of the value of VF, for
example when computing the vectorization `step`, or building vectors
of indices. These operation _make sense_ for scalable vectors too,
but changing the code in these places to be generic and make it work
for scalable vectors is to be submitted in a separate patch, as it is
a functional change.
4. When building the potential VFs in VPlan. Making the VPlan generic
enough to handle scalable vectorization factors is a functional change
that needs a separate patch. See for example `void
LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned
MaxVF)`.
5. The class `IntrinsicCostAttribute`: this class still uses `unsigned
VF` as updating the field to use `ElementCount` woudl require changes
that could result in changing the behavior of the compiler. Will be done
in a separate patch.
7. When dealing with user input for forcing the vectorization
factor. In this case, adding support for scalable vectorization is a
functional change that migh require changes at command line.

Differential Revision: https://reviews.llvm.org/D85794
2020-08-24 13:39:42 +00:00
David Green 2b69efded0 [ARM][LV] Add a preferPredicatedReductionSelect target hook
As part of D84741, this adds a target hook for the
preferPredicatedReductionSelect option and makes use
of it under MVE, allowing us to tail predicate most
reduction loops.

Differential Revision: https://reviews.llvm.org/D85980
2020-08-21 08:48:12 +01:00
David Green 816097e4e5 [LV] Allow tail folded reduction selects to remain in the loop
The normal scheme for tail folding reductions is to use:

loop:
  p = phi(0, a)
  mask = ...
  x = masked_load(..., mask)
  a = add(x, p)
s = select(mask, a, p)

This means we need to keep the register p and a alive out of the loop, plus
the mask. On a target with predicated operations we can instead generate
the phi as p = phi(0, s). This ensures the select in the loop and we can
fold select(m, add(a, b), c) to something like a vaddt c, a, b using the
m predicate. This in turn allows us to tail predicate the entire loop.

Differential Revision: https://reviews.llvm.org/D84741
2020-08-20 14:31:14 +01:00
Hiroshi Yamauchi ab401a8c8a [PGO][PGSO][LV] Fix loop not vectorized issue under profile guided size opts.
D81345 appears to accidentally disables vectorization when explicitly
enabled. As PGSO isn't currently accessible from LoopAccessInfo, revert back to
the vectorization with versioning-for-unit-stride for PGSO.

Differential Revision: https://reviews.llvm.org/D85784
2020-08-19 12:13:34 -07:00
Mehdi Amini a407ec9b6d Revert "Revert "[NFC][llvm] Make the contructors of `ElementCount` private.""
Was reverted because MLIR/Flang builds were broken, these APIs have been
fixed in the meantime.
2020-08-19 17:26:36 +00:00
Mehdi Amini 4fc56d70aa Revert "[NFC][llvm] Make the contructors of `ElementCount` private."
This reverts commit 264afb9e6a.
(and dependent 6b742cc48 and fc53bd610f)

MLIR/Flang are broken.
2020-08-19 17:21:37 +00:00
Francesco Petrogalli 264afb9e6a [NFC][llvm] Make the contructors of `ElementCount` private.
Differential Revision: https://reviews.llvm.org/D86120
2020-08-19 16:26:44 +00:00
Bjorn Pettersson 11446b02c7 [VectorCombine] Fix for non-zero addrspace when creating vector load from scalar load
This is a fixup to commit 43bdac2906, to make sure the
address space from the original load pointer is retained in the
vector pointer.

Resolves problem with
  Assertion `castIsValid(op, S, Ty) && "Invalid cast!"' failed.
due to address space mismatch.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D85912
2020-08-13 18:25:32 +02:00
Sanjay Patel cc892fd9f4 [VectorCombine] early exit if target has no vector registers
Based on post-commit discussion in:
D81766

Other vectorization passes (SLP and Loop) use this TTI API similarly.
2020-08-12 09:22:31 -04:00
Sanjay Patel b0b95dab1c [VectorCombine] add safety check for 0-width register
Based on post-commit discussion in D81766, Hexagon sets this to "0".
I'll see if I can come up with a test, but making the obvious
code fix first to unblock that target.
2020-08-11 20:30:02 -04:00
Dinar Temirbulatov b1600d8b89 [NFC] Guard the cost report block of debug outputs with NDEBUG and
switch to SmallString, this is part of D57779.
2020-08-11 16:34:47 +02:00
Florian Hahn 0b774acf11 [SLP] Make sure instructions are ordered when computing spill cost.
The entries in VectorizableTree are not necessarily ordered by their
position in basic blocks. Collect them and order them by dominance so
later instructions are guaranteed to be visited first. For instructions
in different basic blocks, we only scan to the beginning of the block,
so their order does not matter, as long as all instructions in a basic
block are grouped together. Using dominance ensures a deterministic order.

The modified test case contains an example where we compute a wrong
spill cost (2) without this patch, even though there is no call between
any instruction in the bundle.

This seems to have limited practical impact, .e.g on X86 with a recent
Intel Xeon CPU with -O3 -march=native -flto on MultiSource,SPEC2000,SPEC2006
there are no binary changes.

Reviewed By: ABataev

Differential Revision: https://reviews.llvm.org/D82444
2020-08-11 11:18:12 +02:00
Sanjay Patel 43bdac2906 [VectorCombine] try to create vector loads from scalar loads
This patch was adjusted to match the most basic pattern that starts with an insertelement
(so there's no extract created here). Hopefully, that removes any concern about
interfering with other passes. Ie, the transform should almost always be profitable.

We could make an argument that this could be part of canonicalization, but we
conservatively try not to create vector ops from scalar ops in passes like instcombine.

If the transform is not profitable, the backend should be able to re-scalarize the load.

Differential Revision: https://reviews.llvm.org/D81766
2020-08-09 09:05:06 -04:00
Anton Afanasyev a7478fab6c [SLP] Fix order of `insertelement`/`insertvalue` seed operands
Summary:
This patch takes the indices operands of `insertelement`/`insertvalue`
into account while generation of seed elements for `findBuildAggregate()`.
This function has kept the original order of `insert`s before.
Also this patch optimizes `findBuildAggregate()` preventing it from
redundant temporary vector allocations and its multiple reversing.

Fixes llvm.org/pr44067

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D83779
2020-08-06 22:09:24 +03:00
David Green 745bf6cf44 [LoopVectorizer] Inloop vector reductions
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.

In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).

Differential Revision: https://reviews.llvm.org/D75069
2020-08-06 10:10:50 +01:00
Jordan Rupprecht 3c39db0c44 Revert "[LoopVectorizer] Inloop vector reductions"
This reverts commit e9761688e4. It breaks the build:

```
~/src/llvm-project/llvm/lib/Analysis/IVDescriptors.cpp:868:10: error: no viable conversion from returned value of type 'SmallVector<[...], 8>' to function return type 'SmallVector<[...], 4>'
  return ReductionOperations;
```
2020-08-05 10:24:15 -07:00
David Green e9761688e4 [LoopVectorizer] Inloop vector reductions
Arm MVE has multiple instructions such as VMLAVA.s8, which (in this
case) can take two 128bit vectors, sign extend the inputs to i32,
multiplying them together and sum the result into a 32bit general
purpose register. So taking 16 i8's as inputs, they can multiply and
accumulate the result into a single i32 without any rounding/truncating
along the way. There are also reduction instructions for plain integer
add and min/max, and operations that sum into a pair of 32bit registers
together treated as a 64bit integer (even though MVE does not have a
plain 64bit addition instruction). So giving the vectorizer the ability
to use these instructions both enables us to vectorize at higher
bitwidths, and to vectorize things we previously could not.

In order to do that we need a way to represent that the reduction
operation, specified with a llvm.experimental.vector.reduce when
vectorizing for Arm, occurs inside the loop not after it like most
reductions. This patch attempts to do that, teaching the vectorizer
about in-loop reductions. It does this through a vplan recipe
representing the reductions that the original chain of reduction
operations is replaced by. Cost modelling is currently just done through
a prefersInloopReduction TTI hook (which follows in a later patch).

Differential Revision: https://reviews.llvm.org/D75069
2020-08-05 18:14:05 +01:00
Bardia Mahjour 3c0f347002 [NFC][LV] Vectorized Loop Skeleton Refactoring
This patch tries to improve readability and maintenance
of createVectorizedLoopSkeleton by reorganizing some lines,
updating some of the comments and breaking it up into
smaller logical units.

Reviewed By: pjeeva01

Differential Revision: https://reviews.llvm.org/D83824
2020-08-04 14:50:57 -04:00
Florian Hahn 98db27711d [LV] Do not check widening decision for instrs outside of loop.
No widening decisions will be computed for instructions outside the
loop. Do not try to get a widening decision. The load/store will be just
a scalar load, so treating at as normal should be fine I think.

Fixes PR46950.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D85087
2020-08-03 10:09:24 +01:00
Vitaly Buka b0eb40ca39 [NFC] Remove unused GetUnderlyingObject paramenter
Depends on D84617.

Differential Revision: https://reviews.llvm.org/D84621
2020-07-31 02:10:03 -07:00
Vitaly Buka 89051ebace [NFC] GetUnderlyingObject -> getUnderlyingObject
I am going to touch them in the next patch anyway
2020-07-30 21:08:24 -07:00
David Green 1da0c47fa2 [LoopVectorizer] Don't create unused block masks for reductions. NFC
This removes some unneeded block masks when we don't have any
reductions. It should not have any effect on codegen as the values
created are dead anyway.

Differential Revision: https://reviews.llvm.org/D81415
2020-07-30 14:28:08 +01:00
Simon Pilgrim cc529285fd VectorUtils.h - reduce unnecessary includes. NFC.
Replace TargetLibraryInfo.h include with forward declaration and fix implicit dependencies.

Reduce SmallSet.h include to SmallVector.h include.
2020-07-30 12:27:49 +01:00
David Sherwood 9ad7c980bb [SVE] Don't consider scalable vector types in SLPVectorizerPass::vectorizeChainsInBlock
In vectorizeChainsInBlock we try to collect chains of PHI nodes
that have the same element type, but the code is relying upon
the implicit conversion from TypeSize -> uint64_t. For now, I have
modified the code to ignore PHI nodes with scalable types.

Differential Revision: https://reviews.llvm.org/D83542
2020-07-29 16:29:19 +01:00
David Green 60280e9818 [Analysis] TTI: Add CastContextHint for getCastInstrCost
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types.  Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization.  Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.

For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.

To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.

Original patch by Pierre van Houtryve

Differential Revision: https://reviews.llvm.org/D79162
2020-07-29 13:32:53 +01:00
Kazu Hirata 902cbcd59e Use llvm::is_contained where appropriate (NFC)
Summary:
This patch replaces std::find with llvm::is_contained where
appropriate.

Reviewers: efriedma, nhaehnle

Reviewed By: nhaehnle

Subscribers: arsenm, jvesely, nhaehnle, hiraditya, rogfer01, kerbowa, llvm-commits, vkmr

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D84489
2020-07-27 10:20:44 -07:00
Hiroshi Yamauchi 7bedae7dee [PGO][PGSO] Add profile guided size optimization to loop vectorization legality. 2020-07-21 11:16:36 -07:00
Arthur Eubanks 0dfa4a83fa Revert "[PGO][PGSO] Add profile guided size optimization to loop vectorization legality."
This reverts commit 30c382a7c6.

See https://crbug.com/1106813.
2020-07-17 16:47:41 -07:00
Stanislav Mekhanoshin efb5040262 Fixed warning about signed/unsigned comparison
I've got the report clang11 issues signed/unsigned mismatch
warning here. For some reason only clang11 seems to issue
this warning.

Differential Revision: https://reviews.llvm.org/D83916
2020-07-17 11:03:42 -07:00
Anna Welker 23c9534515 [LV] Enable the LoopVectorizer to create pointer inductions
This patch enables the LoopVectorizer to build a phi of pointer
type and provide the vector loads and stores with vector type
getelementptrs built from the pointer induction variable, which
produces much less instructions than the previous approach of
creating scalar getelementpointers and glue them together to a
vector.

Differential Revision: https://reviews.llvm.org/D81267
2020-07-17 13:35:07 +01:00
Hiroshi Yamauchi 30c382a7c6 [PGO][PGSO] Add profile guided size optimization to loop vectorization legality.
Differential Revision: https://reviews.llvm.org/D83329
2020-07-15 11:49:36 -07:00
Sanne Wouda 13fec93a77 [NFC] rename to reflect F is not necessarily an Intrinsic 2020-07-13 15:28:46 +01:00
Sanne Wouda 7b84045565 [SLPVectorizer] handle vectorizeable library functions
Teaches the SLPVectorizer to use vectorized library functions for
non-intrinsic calls.

This already worked for intrinsics that have vectorized library
functions, thanks to D75878, but schedules with library functions with a
vector variant were being rejected early.

-   assume that there are no load/store dependencies between lib
    functions with a vector variant; this would otherwise prevent the
    bundle from becoming "ready"

-   check during legalization that the vector variant can be used

-   fix-up where we previously assumed that a call would be an intrinsic

Differential Revision: https://reviews.llvm.org/D82550
2020-07-13 15:28:46 +01:00
Ayal Zaks 82a5157ff1 [LV] Fixing versioning-for-unit-stide of loops with small trip count
This patch fixes D81345 and PR46652.

If a loop with a small trip count is compiled w/o -Os/-Oz, Loop Access Analysis
still generates runtime checks for unit strides that will version the loop.

In such cases, the loop vectorizer should either re-run the analysis or bail-out
from vectorizing the loop, as done prior to D81345. The latter is applied for
now as the former requires refactoring.

Differential Revision: https://reviews.llvm.org/D83470
2020-07-12 19:51:47 +03:00
Florian Hahn 264ab1e2c8 [LV] Pick vector loop body as insert point for SCEV expansion.
Currently the DomTree is not kept up to date for additional blocks
generated in the vector loop, for example when vectorizing with
predication. SCEVExpander relies on dominance checks when looking for
existing instructions to re-use and in some cases that can lead to the
expander picking instructions that do not actually dominate their insert
point (e.g. as in PR46525).

Unfortunately keeping the DT up-to-date is a bit tricky, because the CFG
is only patched up after generating code for a block. For now, we can
just use the vector loop header, as this ensures the inserted
instructions dominate all uses in the vector loop. There should be no
noticeable impact on the generated code, as other passes should sink
those instructions, if profitable.

Fixes PR46525.

Reviewers: Ayal, gilr, mkazantsev, dmgreen

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D83288
2020-07-10 10:37:12 +01:00
Benjamin Kramer b44470547e Make helpers static. NFC. 2020-07-09 13:48:56 +02:00
Nicolai Hähnle 3fa989d4fd DomTree: remove explicit use of DomTreeNodeBase::iterator
Summary:
Almost all uses of these iterators, including implicit ones, really
only need the const variant (as it should be). The only exception is
in NewGVN, which changes the order of dominator tree child nodes.

Change-Id: I4b5bd71e32d71b0c67b03d4927d93fe9413726d4

Reviewers: arsenm, RKSimon, mehdi_amini, courbet, rriddle, aartbik

Subscribers: wdng, Prazek, hiraditya, kuhar, rogfer01, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, vkmr, Kayjukh, jurahul, msifontes, cfe-commits, llvm-commits

Tags: #clang, #mlir, #llvm

Differential Revision: https://reviews.llvm.org/D83087
2020-07-08 18:18:49 +02:00
Stanislav Mekhanoshin 64030099c3 SLP: honor requested max vector size merging PHIs
At the moment this place does not check maximum size set
by TTI and just creates a maximum possible vectors.

Differential Revision: https://reviews.llvm.org/D82227
2020-07-08 08:06:15 -07:00
Florian Hahn 04b85e2bcb Revert "[SLP] Make sure instructions are ordered when computing spill cost."
This seems to break http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/24371

This reverts commit eb46137daa.
2020-07-07 23:15:01 +01:00
Ayal Zaks 7bf299c8d8 [LV] Vectorize without versioning-for-unit-stride under -Os/-Oz
If a loop is in a function marked OptSize, Loop Access Analysis should refrain
from generating runtime checks for unit strides that will version the loop.

If a loop is in a function marked OptSize and its vectorization is enabled, it
should be vectorized w/o any versioning.

Fixes PR46228.

Differential Revision: https://reviews.llvm.org/D81345
2020-07-07 15:04:21 +03:00
Jordan Rupprecht 10c82eecbc Revert "[LV] Enable the LoopVectorizer to create pointer inductions"
This reverts commit a8fe12065e.

It causes a crash when building gzip. Will post the detailed reduced test case to D81267.
2020-07-06 17:50:38 -07:00
Florian Hahn cff5739157 [LV] Pass dbgs() to verifyFunction call.
This is done in other places of the pass already and improves the output
on verification failure.
2020-07-06 15:09:20 +01:00
Florian Hahn eb46137daa [SLP] Make sure instructions are ordered when computing spill cost.
The entries in VectorizableTree are not necessarily ordered by their
position in basic blocks. Collect them and order them by dominance so
later instructions are guaranteed to be visited first. For instructions
in different basic blocks, we only scan to the beginning of the block,
so their order does not matter, as long as all instructions in a basic
block are grouped together. Using dominance ensures a deterministic order.

The modified test case contains an example where we compute a wrong
spill cost (2) without this patch, even though there is no call between
any instruction in the bundle.

This seems to have limited practical impact, .e.g on X86 with a recent
Intel Xeon CPU with -O3 -march=native -flto on MultiSource,SPEC2000,SPEC2006
there are no binary changes.

Reviewers: craig.topper, RKSimon, xbolva00, ABataev, spatel

Reviewed By: ABataev

Differential Revision: https://reviews.llvm.org/D82444
2020-07-03 17:30:17 +01:00
Anna Welker a8fe12065e [LV] Enable the LoopVectorizer to create pointer inductions
This patch enables the LoopVectorizer to build a phi of pointer
type and provide the vector loads and stores with vector type
getelementptrs built from the pointer induction variable, which
produces much less instructions than the previous approach of
creating scalar getelementpointers and glue them together to a
vector.

Differential Revision: https://reviews.llvm.org/D81267
2020-07-02 11:39:28 +01:00
Sanjay Patel b6315aee5b [VectorCombine] try to form vector compare and binop to eliminate scalar ops
binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
-->
vcmp = cmp Pred X, VecC
ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0

This is a larger pattern than the existing extractelement folds because we can't
reasonably vectorize the sub-patterns with constants based on cost model calcs
(it doesn't usually make sense to replace a single extracted scalar op with
constant operand with a vector op).

I salvaged as much of the existing logic as I could, but there might be better
ways to share and reduce code.

The motivating case from PR43745:
https://bugs.llvm.org/show_bug.cgi?id=43745
...is the special case of a 2-way reduction. We tried to get SLP to handle that
particular pattern in D59710, but that caused crashing and regressions.
This patch is more general, but hopefully safer.

The v2f64 test with SSE2 surprised me - the cost model accounting looks like this:
OldCost = 0 (free extract of f64 at index 0) + 1 (extract of f64 at index 1) + 2 (scalar fcmps) + 1 (and of bools) = 4
NewCost = 2 (vector fcmp) + 1 (shuffle) + 1 (vector 'and') + 1 (extract of bool) = 5

Differential Revision: https://reviews.llvm.org/D82474
2020-06-29 10:38:52 -04:00
Sanjay Patel 3b95d8346d [VectorCombine] refactor - make helper function for extract to shuffle logic; NFC
Preliminary for D82474
2020-06-29 09:55:34 -04:00
Florian Hahn c0cdba727a [VPlan] Add & use VPValue for VPWidenGEPRecipe operands (NFC).
This patch adds VPValue version of the GEP's operands to
VPWidenGEPRecipe and uses them during code-generation.

Reviewers: Ayal, gilr, rengolin

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D80220
2020-06-26 20:59:17 +01:00
Guillaume Chatelet 1507fc1506 [Alignment][NFC] Migrate TTI::isLegalToVectorize{Load,Store}Chain to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82653
2020-06-26 14:14:27 +00:00
Guillaume Chatelet b66e33a689 [Alignment][NFC] Migrate TTI::getGatherScatterOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82577
2020-06-26 11:08:27 +00:00
Guillaume Chatelet fdc7c7fb87 [Alignment][NFC] Migrate TTI::getInterleavedMemoryOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82573
2020-06-26 11:00:53 +00:00
Guillaume Chatelet 7e1f79c3de [Alignment][NFC] Migrate TTI::getMaskedMemoryOpCost to Align
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82569
2020-06-26 10:14:16 +00:00
Simon Pilgrim 1b10c618e9 LoopVectorize.h - reduce AliasAnalysis.h include to forward declaration. NFC.
Replace legacy AliasAnalysis typedef with AAResults where necessary.
2020-06-26 10:49:00 +01:00
dfukalov 7ddee0922f [NFCI][CostModel] Add const to Value*.
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.

Reviewers: samparker

Reviewed By: samparker

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82383
2020-06-24 23:16:08 +03:00
Florian Hahn 35bb9bfbb0 [SLP] Limit GEP lists based on width of index computation.
D68667 introduced a tighter limit to the number of GEPs to simplify
together. The limit was based on the vector element size of the pointer,
but the pointers themselves are not actually put in vectors.

IIUC we try to vectorize the index computations here, so we should base
the limit on the vector element size of the computation of the index.

This restores the test regression on AArch64 and also restores the
vectorization for a important pattern in SPEC2006/464.h264ref on
AArch64 (@test_i16_extend). We get a large benefit from doing a single
load up front and then processing the index computations in vectors.

Note that we could probably even further improve the AArch64 codegen, if
we would do zexts to i32 instead of i64 for the sub operands and then do
a single vector sext on the result of the subtractions. AArch64 provides
dedicated vector instructions to do so. Sketch of proof in Alive:
https://alive2.llvm.org/ce/z/A4xYAB

Reviewers: craig.topper, RKSimon, xbolva00, ABataev, spatel

Reviewed By: ABataev, spatel

Differential Revision: https://reviews.llvm.org/D82418
2020-06-24 19:56:53 +01:00
Sanjay Patel a0f967418f [VectorCombine] give invalid index value a name; NFC 2020-06-24 11:10:36 -04:00
Sanjay Patel 54143e2bd5 [VectorCombine] do not use magic number for undef mask element; NFC 2020-06-22 20:47:09 -04:00
Sanjay Patel 9934cc544c [VectorCombine] make helper function for shift-shuffle; NFC
This will probably be useful for other extract patterns.
2020-06-22 12:23:52 -04:00
Sanjay Patel 98c2f4eea5 [VectorCombine] add helper to replace uses and rename
The tests are regenerated to show a path that missed renaming,
but there should be no functional difference from this patch.
2020-06-22 09:58:49 -04:00
Sanjay Patel de65b356dc [VectorCombine] add/use pass-level IRBuilder
This saves creating/destroying a builder every time we
perform some transform.

The tests show instruction ordering diffs resulting from
always inserting at the root instruction now, but those
should be benign.
2020-06-22 09:01:29 -04:00
Sanjay Patel cce625f73d [VectorCombine] improve IR debugging by providing/salvaging value names
The tests are regenerated to show the diffs, but there should be no
functional change from this patch.
2020-06-22 08:35:47 -04:00
Sanjay Patel 6bdd531af5 [VectorCombine] create class for pass to hold analyses, etc; NFC
This doesn't change anything currently, but it would make sense
to create a class-level IRBuilder instead of recreating that
everywhere. As we expand to more optimizations, we will probably
also want to hold things like the DataLayout or other constant
refs in here too.
2020-06-21 16:07:33 -04:00
Sanjay Patel 741e20f3d6 [VectorCombine] fix assert for type of compare operand
As shown in the post-commit comment for D81661 - we need to
loosen the type assertion to allow scalarization of a compare
for vectors of pointers.
2020-06-20 15:20:17 -04:00
Sanjay Patel 216a37bb46 [VectorCombine] refactor extract-extract logic; NFCI 2020-06-19 14:52:27 -04:00
Sanjay Patel 6d864097a2 [VectorCombine] fix crash while transforming constants
This is a variation of the proposal in D82049 with an extra test.
2020-06-19 12:30:32 -04:00
Sanjay Patel 46a285ad9e [IRBuilder] add/use wrapper to create a generic compare based on predicate type; NFC
The predicate can always be used to distinguish between icmp and fcmp,
so we don't need to keep repeating this check in the callers.
2020-06-18 15:47:06 -04:00
Simon Pilgrim a5f1f9c9b8 ScalarEvolution.h - reduce LoopInfo.h include to forward declarations. NFC.
Move ScalarEvolution::forgetLoopDispositions implementation to ScalarEvolution.cpp to remove the dependency.

Add implicit header dependency to source files where necessary.
2020-06-17 15:48:23 +01:00
Sjoerd Meijer c1034d044a Follow up of rGe345d547a0d5, and attempt to pacify buildbot:
"error: 'get' is deprecated: The base class version of get with the scalable
argument defaulted to false is deprecated."

Changed VectorType::get() -> FixedVectorType::get().
2020-06-17 13:24:09 +01:00
Sjoerd Meijer e345d547a0 Recommit "[LV] Emit @llvm.get.active.lane.mask for tail-folded loops"
Fixed ARM regression test.

Please see the original commit message rG47650451738c for details.
2020-06-17 13:12:15 +01:00
Sjoerd Meijer d4e183f686 Revert "[LV] Emit @llvm.get.active.mask for tail-folded loops"
This reverts commit 4765045173
while I investigate the build bot failures.
2020-06-17 10:09:54 +01:00
Sjoerd Meijer 4765045173 [LV] Emit @llvm.get.active.mask for tail-folded loops
This emits new IR intrinsic @llvm.get.active.mask for tail-folded vectorised
loops if the intrinsic is supported by the backend, which is checked by
querying TargetTransform hook emitGetActiveLaneMask.

This intrinsic creates a mask representing active and inactive vector lanes,
which is used by the masked load/store instructions that are created for
tail-folded loops. The semantics of @llvm.get.active.mask are described here in
LangRef:

https://llvm.org/docs/LangRef.html#llvm-get-active-lane-mask-intrinsics

This intrinsic is also used to provide a hint to the backend. That is, the
second argument of the intrinsic represents the back-edge taken count of the
loop. For MVE, for example, we use that to set up tail-predication, which is a
new form of predication in MVE for vector loops that implicitely predicates the
last vector loop iteration by implicitely setting active/inactive lanes, i.e.
the tail loop is predicated. In order to set up a tail-predicated vector loop,
we need to know the number of data elements processed by the vector loop, which
corresponds the the tripcount of the scalar loop, which we can now reconstruct
using @llvm.get.active.mask.

Differential Revision: https://reviews.llvm.org/D79100
2020-06-17 09:53:58 +01:00
Christopher Tetreault ff628f5f5e [SVE] Eliminate calls to default-false VectorType::get() from Vectorize
Reviewers: efriedma, fhahn, spatel, sdesmalen, kmclaughlin

Reviewed By: efriedma

Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D81521
2020-06-16 12:50:13 -07:00
Sanjay Patel ed67f5e7ab [VectorCombine] scalarize compares with insertelement operand(s)
Generalize scalarization (recently enhanced with D80885)
to allow compares as well as binops.
Similar to binops, we are avoiding scalarization of a loaded
value because that could avoid a register transfer in codegen.
This requires 1 extra predicate that I am aware of: we do not
want to scalarize the condition value of a vector select. That
might also invert a transform that we do in instcombine that
prefers a vector condition operand for a vector select.

I think this is the final step in solving PR37463:
https://bugs.llvm.org/show_bug.cgi?id=37463

Differential Revision: https://reviews.llvm.org/D81661
2020-06-16 13:48:10 -04:00
Sam Parker 2596da3174 [CostModel] getCFInstrCost in getUserCost.
Have BasicTTI call the base implementation so that both agree on the
default behaviour, which the default being a cost of '1'. This has
required an X86 specific implementation as it seems to be very
reliant on those instructions being free. Changes are also made to
AMDGPU so that their implementations distinguish between cost kinds,
so that the unrolling isn't affected. PowerPC also has its own
implementation to prevent changes to the reg-usage vectorizer test.

The cost model test changes now reflect that ret instructions are not
generally free.

Differential Revision: https://reviews.llvm.org/D79164
2020-06-15 09:28:46 +01:00
Roman Lebedev 7aeb41b3c8
[NFCI] VectorCombine: add statistic for bitcast(shuf()) -> shuf(bitcast()) xform 2020-06-12 23:10:53 +03:00
Florian Hahn 3a846d4d92 [VPlan] Reject loops without computable backedge taken counts
getOrCreateTripCount is used to generate code for the outer loop, but it
requires a computable backedge taken counts. Check that in the VPlan
native path.

Reviewers: Ayal, gilr, rengolin, sguggill

Reviewed By: sguggill

Differential Revision: https://reviews.llvm.org/D81088
2020-06-12 10:31:18 +01:00
Sanjay Patel 039ff29ef6 [VectorCombine] remove unused parameters; NFC 2020-06-11 19:15:03 -04:00
Simon Pilgrim 5dc4e7c2b9 [VectorCombine] scalarizeBinop - support an all-constant src vector operand
scalarizeBinop currently folds

  vec_bo((inselt VecC0, V0, Index), (inselt VecC1, V1, Index))
  ->
  inselt(vec_bo(VecC0, VecC1), scl_bo(V0,V1), Index)

This patch extends this to account for cases where one of the vec_bo operands is already all-constant and performs similar cost checks to determine if the scalar binop with a constant still makes sense:

  vec_bo((inselt VecC0, V0, Index), VecC1)
  ->
  inselt(vec_bo(VecC0, VecC1), scl_bo(V0,extractelt(V1,Index)), Index)

Fixes PR42174

Differential Revision: https://reviews.llvm.org/D80885
2020-06-09 19:02:05 +01:00
Benjamin Kramer 3badd17b69 SmallPtrSet::find -> SmallPtrSet::count
The latter is more readable and more efficient. While there clean up
some double lookups. NFCI.
2020-06-07 22:38:08 +02:00
Simon Pilgrim 5006e551d3 LoopAnalysisManager.h - reduce includes to forward declarations. NFC.
Move implicit include dependencies down to header/source files.
2020-06-06 14:06:46 +01:00
Florian Hahn 211596c94e [VPlan] Support extracting lanes for defs managed in VPTransformState.
Currently extracting a lane for a VPValue def is not supported, if it is
managed directly by VPTransformState (e.g. because it is created by a
VPInstruction or an external VPValue def).

For now, simply extract the requested lane. In the future, we should
also cache the extracted scalar values, similar to LV.

Reviewers: Ayal, rengolin, gilr, SjoerdMeijer

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D80787
2020-06-03 12:14:16 +01:00
Florian Hahn b446ec56a2 [LV] Make sure the MaxVF is a power-of-2 by rounding down.
LV currently only supports power of 2 vectorization factors, which has
been made explicit with the assertion added in
840450549c.

However, if the widest type is not a power-of-2 the computed MaxVF won't
be a power-of-2 either. This patch updates computeFeasibleMaxVF to
ensure the returned value is a power-of-2 by rounding down to the
nearest power-of-2.

Fixes PR46139.

Reviewers: Ayal, gilr, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D80870
2020-06-02 10:40:49 +01:00
Valery N Dmitriev a45688a72c [SLP] Apply external to vectorizable tree users cost adjustment for
relevant aggregate build instructions only (UserCost).
Users are detected with findBuildAggregate routine and the trick is
that following SLP vectorization may end up vectorizing entire list
with smaller chunks. Cost adjustment then is applied for individual
chunks and these adjustments obviously have to be smaller than the
entire aggregate build cost.

Differential Revision: https://reviews.llvm.org/D80773
2020-05-29 15:37:41 -07:00
Christopher Tetreault d2befc6633 [SVE] Eliminate calls to default-false VectorType::get() from Vectorize
Reviewers: efriedma, c-rhodes, david-arm, fhahn

Reviewed By: david-arm

Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80339
2020-05-29 11:31:24 -07:00
Florian Hahn 9b507b2127 [LAA] We only need pointer checks if there are non-zero checks (NFC).
If it turns out that we can do runtime checks, but there are no
runtime-checks to generate, set RtCheck.Need to false.

This can happen if we can prove statically that the pointers passed in
to canCheckPtrAtRT do not alias. This should not change any results, but
allows us to skip some work and assert that runtime checks are
generated, if LAA indicates that runtime checks are required.

Reviewers: anemet, Ayal

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D79969

Note: This is a recommit of 259abfc7cb,
with some suggested renaming.
2020-05-27 12:47:36 +01:00
Florian Hahn 2d0389821e Revert "[LAA] We only need pointer checks if there are non-zero checks (NFC)."
This reverts commit 259abfc7cb.

Reverting this, as I missed a case where we return without setting
RtCheck.Need.
2020-05-27 12:39:45 +01:00