Adds atomic update codegen for the following forms of expressions:
x binop= expr;
x++;
++x;
x--;
--x;
x = x binop expr;
x = expr binop x;
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted:
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
...
Differential Revision: http://reviews.llvm.org/D8536
llvm-svn: 233513
We previously defaulted to long double, but it's also possible to have
a half inc/dec amount, when LangOpts NativeHalfType is set.
Currently, that's only true for OpenCL.
llvm-svn: 233135
On AArch64, the -fallow-half-args-and-returns option is the default.
With it, the half type is considered legal (rather than the i16 used
normally for __fp16), but no operation is, except conversions and
load/stores and such.
The previous behavior was tantamount to saying LangOpts.NativeHalfType
was implied by LangOpts.HalfArgsAndReturns, which isn't true.
Instead, teach the various parts of CodeGen that already know about
half (using the intrinsics or not) about this weird in-between case,
where the "half" type is legal, but operations on it aren't.
This is a smaller intermediate step to the end-goal of removing the
intrinsic, always using "half", and letting the backend legalize.
Builds on r232968.
rdar://20045970, rdar://17468714
Differential Revision: http://reviews.llvm.org/D8367
llvm-svn: 232971
Fix the CodeGen so that for types bigger than float, instead of
converting to fp16 via the sequence "InTy -> float -> fp16", we
perform conversions in just one step. This avoids the double
rounding which potentially changes results from a natural
IEEE-754 operation.
rdar://17594379, rdar://17468714
Differential Revision: http://reviews.llvm.org/D4602
Part of: http://reviews.llvm.org/D8367
llvm-svn: 232968
This scheme checks that pointer and lvalue casts are made to an object of
the correct dynamic type; that is, the dynamic type of the object must be
a derived class of the pointee type of the cast. The checks are currently
only introduced where the class being casted to is a polymorphic class.
Differential Revision: http://reviews.llvm.org/D8312
llvm-svn: 232241
This is a recommit of r231150, reverted in r231409. Turns out
that -fsanitize=shift-base check implementation only works if the
shift exponent is valid, otherwise it contains undefined behavior
itself.
Make sure we check that exponent is valid before we proceed to
check the base. Make sure that we actually report invalid values
of base or exponent if -fsanitize=shift-base or
-fsanitize=shift-exponent is specified, respectively.
llvm-svn: 231711
It's not that easy. If we're only checking -fsanitize=shift-base we
still need to verify that exponent has sane value, otherwise
UBSan-inserted checks for base will contain undefined behavior
themselves.
llvm-svn: 231409
-fsanitize=shift is now a group that includes both these checks, so
exisiting users should not be affected.
This change introduces two new UBSan kinds that sanitize only left-hand
side and right-hand side of shift operation. In practice, invalid
exponent value (negative or too large) tends to cause more portability
problems, including inconsistencies between different compilers, crashes
and inadequeate results on non-x86 architectures etc. That is,
-fsanitize=shift-exponent failures should generally be addressed first.
As a bonus, this change simplifies CodeGen implementation for emitting left
shift (separate checks for base and exponent are now merged by the
existing generic logic in EmitCheck()), and LLVM IR for these checks
(the number of basic blocks is reduced).
llvm-svn: 231150
To handle default arguments in C++ in the debug info, we disable code
updating the debug location during the emission of default arguments.
This code was buggy in the case of default arguments which, themselves,
have default arguments - the inner default argument would re-enable
debug info when it was finished, but before the outer default argument
was finished.
This was already a bug, but got worse (because a crasher instead of just
a quality bug) with the recent improvements to debug info line quality
because... The ApplyDebugLocation scoped device would find the debug
info disabled and not save any debug location. But then in
~ApplyDebugLocation it would find the debug info had been enabled and
would then apply the no-location. Then the outer function call would be
emitted without any location. That's bad.
Arguably we could /also/ fix the ApplyDebugLocation to assert on this
situation (where debug info was disabled in the ctor and enabled in the
dtor, or the other way around) but this is at least the necessary fix
regardless.
(also, I imagine this disabling behavior might need to be in-place for
CGExprComplex and CGExprAgg too, maybe... ?)
And I seem to recall seeing some weird default arg stepping behavior
recently which might be related to this too... I'll have to look into
it.
llvm-svn: 228053
distinction between the different use-cases. With the previous default
behavior we would occasionally emit empty debug locations in situations
where they actually were strictly required (= on invoke insns).
We now have a choice between defaulting to an empty location or an
artificial location.
Specifically, this fixes a bug caused by a missing debug location when
emitting C++ EH cleanup blocks from within an artificial function, such as
an ObjC destroy helper function.
rdar://problem/19670595
llvm-svn: 228003
This causes things like assignment to refer to the '=' rather than the
LHS when attributing the store instruction, for example.
There were essentially 3 options for this:
* The beginning of an expression (this was the behavior prior to this
commit). This meant that stepping through subexpressions would bounce
around from subexpressions back to the start of the outer expression,
etc. (eg: x + y + z would go x, y, x, z, x (the repeated 'x's would be
where the actual addition occurred)).
* The end of an expression. This seems to be what GCC does /mostly/, and
certainly this for function calls. This has the advantage that
progress is always 'forwards' (never jumping backwards - except for
independent subexpressions if they're evaluated in interesting orders,
etc). "x + y + z" would go "x y z" with the additions occurring at y
and z after the respective loads.
The problem with this is that the user would still have to think
fairly hard about precedence to realize which subexpression is being
evaluated or which operator overload is being called in, say, an asan
backtrace.
* The preferred location or 'exprloc'. In this case you get sort of what
you'd expect, though it's a bit confusing in its own way due to going
'backwards'. In this case the locations would be: "x y + z +" in
lovely postfix arithmetic order. But this does mean that if the op+
were an operator overload, say, and in a backtrace, the backtrace will
point to the exact '+' that's being called, not to the end of one of
its operands.
(actually the operator overload case doesn't work yet for other reasons,
but that's being fixed - but this at least gets scalar/complex
assignments and other plain operators right)
llvm-svn: 227027
Several pieces of code were relying on implicit debug location setting
which usually lead to incorrect line information anyway. So I've fixed
those (in r225955 and r225845) separately which should pave the way for
this commit to be cleanly reapplied.
The reason these implicit dependencies resulted in crashes with this
patch is that the debug location would no longer implicitly leak from
one place to another, but be set back to invalid. Once a call with
no/invalid location was emitted, if that call was ever inlined it could
produce invalid debugloc chains and assert during LLVM's codegen.
There may be further cases of such bugs in this patch - they're hard to
flush out with regression testing, so I'll keep an eye out for reports
and investigate/fix them ASAP if they come up.
Original commit message:
Reapply "DebugInfo: Generalize debug info location handling"
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225956
Summary:
The Mips ABI's treat pointers in the same way as integers. They are
sign-extended to 32-bit for O32, and 64-bit for N32/N64. This doesn't matter
for O32 and N64 where pointers are already the correct width but it does matter
for big-endian N32, where pointers are 32-bit and need promoting.
The caller side is already passing pointers correctly. This patch corrects the
callee.
Reviewers: vmedic, atanasyan
Reviewed By: atanasyan
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6812
llvm-svn: 225782
This reverts commit r225000, r225021, r225083, r225086, r225090.
The root change (r225000) still has several issues where it's caused
calls to be emitted without debug locations. This causes assertion
failures if/when those calls are inlined.
I'll work up some test cases and fixes before recommitting this.
llvm-svn: 225555
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
Currently clang fires assertions on x86-64 on any atomic operations for long double operands. Patch fixes codegen for such operations.
Differential Revision: http://reviews.llvm.org/D6499
llvm-svn: 224230
CodeGen assumed that a compound literal with array type should have a
corresponding LLVM IR array type.
We had two bugs in this area:
- Zero sized arrays in compound literals would lead to the creation of
an opaque type. This is unnecessary, we should just create an array
type with a bound of zero.
- Funny record types (like unions) lead to exotic IR types for compound
literals. In this case, CodeGen must be prepared to deal with the
possibility that it might not have an array IR type.
This fixes PR21912.
llvm-svn: 224219
OpenCL v2.0 s6.5.5 restricts conversion of pointers to different address spaces:
- the named address spaces (__global, __local, and __private) => __generic - implicitly converted;
- __generic => named - with an explicit cast;
- named <=> named - disallowed;
- __constant <=> any other - disallowed.
llvm-svn: 222834
Summary:
With this patch, passing a va_list to another function and reading 10 int's from
it works correctly on a big-endian target.
Based on a pair of patches by David Chisnall, one of which I've reworked
for the current trunk.
Reviewers: theraven, atanasyan
Reviewed By: theraven, atanasyan
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6248
llvm-svn: 222339
Summary:
This change makes CodeGenFunction::EmitCheck() take several
conditions that needs to be checked (all of them need to be true),
together with sanitizer kinds these checks are for. This would allow
to split one call into UBSan runtime into several calls in case
different sanitizer kinds would have different recoverability
settings.
Tests should be fixed accordingly, I'm working on it.
Test Plan: regression test suite.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D6219
llvm-svn: 221716
Make sure CodeGenFunction::EmitCheck() knows which sanitizer
it emits check for. Make CheckRecoverableKind enum an
implementation detail and move it away from header.
Currently CheckRecoverableKind is determined by the type of
sanitizer ("unreachable" and "return" are unrecoverable,
"vptr" is always-recoverable, all the rest are recoverable).
This will change in future if we allow to specify which sanitizers
are recoverable, and which are not by -fsanitize-recover= flag.
No functionality change.
llvm-svn: 221635
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
SanitizerOptions is not even a POD now, so having global variable of
this type, is not nice. Instead, provide a regular constructor and clear()
method, and let each CodeGenFunction has its own copy of SanitizerOptions
it uses.
llvm-svn: 220920
This change adds UBSan check to upcasts. Namely, when we
perform derived-to-base conversion, we:
1) check that the pointer-to-derived has suitable alignment
and underlying storage, if this pointer is non-null.
2) if vptr-sanitizer is enabled, and we perform conversion to
virtual base, we check that pointer-to-derived has a matching vptr.
llvm-svn: 219642
and !=) to support mixed complex and real operand types.
This requires removing an assert from SemaChecking, and adding support
both to the constant evaluator and the code generator to synthesize the
imaginary part when needed. This seemed somewhat cleaner than having
just the comparison operators force real-to-complex conversions.
I've added test cases for these operations. I'm really terrified that
there were *no* tests in-tree which exercised this.
This turned up when trying to build R after my change to the complex
type lowering.
llvm-svn: 219570
We already add the align parameter attribute for function parameters that have
the align_value attribute (or those with a typedef type having that attribute),
which is an important special case, but does not handle pointers with value
alignment assumptions that come into scope in any other way. To handle the
general case, emit an @llvm.assume-based alignment assumption whenever we load
the pointer-typed lvalue of an align_value-attributed variable (except for
function parameters, which we already deal with at entry).
I'll also note that this is more general than Intel's described support in:
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization
which states that the compiler inserts __assume_aligned directives in response
to align_value-attributed variables only for function parameters and for the
initializers of local variables. I think that we can make the optimizer deal
with this more-general scheme (which could lead to a lot of calls to
@llvm.assume inside of loop bodies, for example), but if not, I'll rework this
to be less aggressive.
llvm-svn: 219052
Most of the debug info emission is powered essentially from function
definitions - if we emit the definition of a function, we emit the types
of its parameters, the members of those types, and so on and so forth.
For types that aren't referenced even indirectly due to this - because
they only appear in temporary expressions, not in any named variable, we
need to explicitly emit/add them as is done here. This is not the only
case of such code, and we might want to consider handling "void
func(void*); ... func(new T());" (currently debug info for T is not
emitted) at some point, though GCC doesn't. There's a much broader
solution to these issues, but it's a lot of work for possibly marginal
gain (but might help us improve the default -fno-standalone-debug
behavior to be even more aggressive in some places). See the original
review thread for more details.
Patch by jyoti allur (jyoti.yalamanchili@gmail.com)!
Differential Revision: http://reviews.llvm.org/D2498
llvm-svn: 218390
ACLE 2.0 allows __fp16 to be used as a function argument or return
type. This enables this for AArch64.
This also fixes an existing bug that causes clang to not allow
homogeneous floating-point aggregates with a base type of __fp16. This
is valid for AAPCS64, but not for AAPCS-VFP.
llvm-svn: 216558
This is used to mark the instructions emitted by Clang to implement
variety of UBSan checks. Generally, we don't want to instrument these
instructions with another sanitizers (like ASan).
Reviewed in http://reviews.llvm.org/D4544
llvm-svn: 213291
Originally committed in r211722, this fixed one case of dtor calls being
emitted without locations (this causes problems for debug info if the
call is then inlined), this caught only some of the cases.
Instead of trying to re-enable the location before the cleanup, simply
re-enable the location immediately after the unconditional branches in
question using a scoped device to ensure the no-location state doesn't
leak out arbitrarily.
llvm-svn: 212761
Now CodeGenFunction is responsible for looking at sanitizer blacklist
(in CodeGenFunction::StartFunction) and turning off instrumentation,
if necessary.
No functionality change.
llvm-svn: 212501
With && at the top level of an expression, the last thing done when
emitting the expression was an unconditional jump to the cleanup block.
To reduce the amount of stepping, the DebugLoc is omitted from the
unconditional jump. This is done by clearing the IRBuilder's
"CurrentDebugLocation"*. If this is not set to some non-empty value
before the cleanup block is emitted, the cleanups don't get a location
either. If a call without a location is emitted in a function with debug
info, and that call is then inlined - bad things happen. (without a
location for the call site, the inliner would just leave the inlined
DebugLocs as they were - pointing to roots in the original function, not
inlined into the current function)
Follow up commit to LLVM will ensure that breaking the invariants of the
DebugLoc chains by having chains that don't lead to the current function
will fail assertions, so we shouldn't accidentally slip any of these
cases in anymore. Those assertions may reveal further cases that need to
be fixed in clang, though I've tried to test heavily to avoid that.
* See r128471, r128513 for the code that clears the
CurrentDebugLocation. Simply removing this code or moving the code
into IRBuilder to apply to all unconditional branches would regress
desired behavior, unfortunately.
llvm-svn: 211722
This is a minimal fix for clang. I'll soon add support for generating
weak variants when requested, but that's not really necessary for the
LLVM change in isolation.
llvm-svn: 210907
Previously, we made one traversal of the AST prior to codegen to assign
counters to the ASTs and then propagated the count values during codegen. This
patch now adds a separate AST traversal prior to codegen for the
-fprofile-instr-use option to propagate the count values. The counts are then
saved in a map from which they can be retrieved during codegen.
This new approach has several advantages:
1. It gets rid of a lot of extra PGO-related code that had previously been
added to codegen.
2. It fixes a serious bug. My original implementation (which was mailed to the
list but never committed) used 3 counters for every loop. Justin improved it to
move 2 of those counters into the less-frequently executed breaks and continues,
but that turned out to produce wrong count values in some cases. The solution
requires visiting a loop body before the condition so that the count for the
condition properly includes the break and continue counts. Changing codegen to
visit a loop body first would be a fairly invasive change, but with a separate
AST traversal, it is easy to control the order of traversal. I've added a
testcase (provided by Justin) to make sure this works correctly.
3. It improves the instrumentation overhead, reducing the number of counters for
a loop from 3 to 1. We no longer need dedicated counters for breaks and
continues, since we can just use the propagated count values when visiting
breaks and continues.
To make this work, I needed to make a change to the way we count case
statements, going back to my original approach of not including the fall-through
in the counter values. This was necessary because there isn't always an AST node
that can be used to record the fall-through count. Now case statements are
handled the same as default statements, with the fall-through paths branching
over the counter increments. While I was at it, I also went back to using this
approach for do-loops -- omitting the fall-through count into the loop body
simplifies some of the calculations and make them behave the same as other
loops. Whenever we start using this instrumentation for coverage, we'll need
to add the fall-through counts into the counter values.
llvm-svn: 201528
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
adjustFallThroughCount isn't a good name, and the documentation was
even worse. This commit attempts to clarify what it's for and when to
use it.
llvm-svn: 199139
Remove UnaryTypeTraitExpr and switch all remaining type trait related handling
over to TypeTraitExpr.
The UTT/BTT/TT enum prefix and evaluation code is retained pending further
cleanup.
This is part of the ongoing work to unify type traits following the removal of
BinaryTypeTraitExpr in r197273.
llvm-svn: 198271
There's nothing special about type traits accepting two arguments.
This commit eliminates BinaryTypeTraitExpr and switches all related handling
over to TypeTraitExpr.
Also fixes a CodeGen failure with variadic type traits appearing in a
non-constant expression.
The BTT/TT prefix and evaluation code is retained as-is for now but will soon
be further cleaned up.
This is part of the ongoing work to unify type traits.
llvm-svn: 197273
With the introduction of explicit address space casts into LLVM, there's
a need to provide a new cast kind the front-end can create for C/OpenCL/CUDA
and code to produce address space casts from those kinds when appropriate.
Patch by Michele Scandale!
llvm-svn: 197036
whether we can safely lower a conditional operator to select was insufficient.
I've left a large comment in place to explaining the sort of problems that this
transform can encounter in clang in the hopes of discouraging others from
reimplementing it wrongly again in the future. (The test should also help with
that, but it's easy to work around any single test I might add and think that
your particular implementation doesn't miscompile any code.)
llvm-svn: 194289
check using the ubsan runtime) and -fsanitize=local-bounds (for the middle-end
check which inserts traps).
Remove -fsanitize=local-bounds from -fsanitize=undefined. It does not produce
useful diagnostics and has false positives (PR17635), and is not a good
compromise position between UBSan's checks and ASan's checks.
Map -fbounds-checking to -fsanitize=local-bounds to restore Clang's historical
behavior for that flag.
llvm-svn: 193205
LLVM supports applying conversion instructions to vectors of the same number of
elements (fptrunc, fptosi, etc.) but there had been no way for a Clang user to
cause such instructions to be generated when using builtin vector types.
C-style casting on vectors is already defined in terms of bitcasts, and so
cannot be used for these conversions as well (without leading to a very
confusing set of semantics). As a result, this adds a __builtin_convertvector
intrinsic (patterned after the OpenCL __builtin_astype intrinsic). This is
intended to aid the creation of vector intrinsic headers that create generic IR
instead of target-dependent intrinsics (in other words, this is a generic
_mm_cvtepi32_ps). As noted in the documentation, the action of
__builtin_convertvector is defined in terms of the action of a C-style cast on
each vector element.
llvm-svn: 190915
Summary:
UBSan was checking for alignment of the derived class on the pointer to
the base class, before converting. With some class hierarchies, this could
generate false positives.
Added test-case.
llvm-svn: 187948
Previously a 2-bit mask was used to mask each element of a vec6 mask before doing the extracts instead of 3-bit mask necessary to cover 0-5. vec3 was the only non-power-of-2 that worked correctly because a +1 conditionally added before calculating floor(log2(elements)).
llvm-svn: 187560
This is the same way GenericSelectionExpr works, and it's generally a
more consistent approach.
A large part of this patch is devoted to caching the value of the condition
of a ChooseExpr; it's needed to avoid threading an ASTContext into
IgnoreParens().
Fixes <rdar://problem/14438917>.
llvm-svn: 186738
Sema needs to be able to accurately determine what will be
emitted as a constant initializer and what will not, so
we get accurate errors in C and accurate -Wglobal-constructors
warnings in C++. This makes Expr::isConstantInitializer match
CGExprConstant as closely as possible.
llvm-svn: 186464
This simplifies the core benefit of -flimit-debug-info by taking a more
systematic approach to avoid emitting debug info definitions for types
that only require declarations. The previous ad-hoc approach (3 cases
removed in this patch) had many holes.
The general approach (adding a bit to TagDecl and callback through
ASTConsumer) has been discussed with Richard Smith - though always open
to revision.
llvm-svn: 186262
Add a CXXDefaultInitExpr, analogous to CXXDefaultArgExpr, and use it both in
CXXCtorInitializers and in InitListExprs to represent a default initializer.
There's an additional complication here: because the default initializer can
refer to the initialized object via its 'this' pointer, we need to make sure
that 'this' points to the right thing within the evaluation.
llvm-svn: 179958
it wasn't taking into account that the float should be truncated *before* the
range check happens. Thus (unsigned)-0.99 and (unsigned char)255.9 have defined
behavior and should not be trapped.
llvm-svn: 177362
aggregate types in a profoundly wrong way that has to be
worked around in every call site, to getEvaluationKind,
which classifies and distinguishes between all of these
cases.
Also, normalize the API for loading and storing complexes.
I'm working on a larger patch and wanted to pull these
changes out, but it would have be annoying to detangle
them from each other.
llvm-svn: 176656
- Generate atomicrmw operations in most of the cases when it's sensible to do
so.
- Don't crash in several common cases (and hopefully don't crash in more of
them).
- Add some better tests.
We now generate significantly better code for things like:
_Atomic(int) x;
...
x++;
On MIPS, this now generates a 4-instruction ll/sc loop, where previously it
generated about 30 instructions in two nested loops. On x86-64, we generate a
single lock incl, instead of a lock cmpxchgl loop (one instruction instead of
ten).
llvm-svn: 176420
calls and declarations.
LLVM has a default CC determined by the target triple. This is
not always the actual default CC for the ABI we've been asked to
target, and so we sometimes find ourselves annotating all user
functions with an explicit calling convention. Since these
calling conventions usually agree for the simple set of argument
types passed to most runtime functions, using the LLVM-default CC
in principle has no effect. However, the LLVM optimizer goes
into histrionics if it sees this kind of formal CC mismatch,
since it has no concept of CC compatibility. Therefore, if this
module happens to define the "runtime" function, or got LTO'ed
with such a definition, we can miscompile; so it's quite
important to get this right.
Defining runtime functions locally is quite common in embedded
applications.
llvm-svn: 176286
implementation; this is much more inline with the original implementation
(i.e., pre-ubsan) and does not require run-time library support.
The trapping implementation can be invoked using either '-fcatch-undefined-behavior'
or '-fsanitize=undefined-trap -fsanitize-undefined-trap-on-error', with the latter
being preferred. Eventually, the -fcatch-undefined-behavior' flag will be removed.
llvm-svn: 173848
difference between type widths of a vector and the width of one of its elements
in the case of vector shifts. Use correct witdth in the vector case.
llvm-svn: 172047
with respect to the lower "left-hand-side bitwidth" bits, even when negative);
see OpenCL spec 6.3j. This patch both implements this behaviour in the code
generator and "constant folding" bits of Sema, and also prevents tests
to detect undefinedness in terms of the weaker C99 or C++ specifications
from being applied.
llvm-svn: 171755
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
more sense anyway - it determines how expressions are codegen'd. It also ensures
that -ffp-contract=fast has the intended effect when compiling LLVM IR.
llvm-svn: 168027
checks to enable. Remove frontend support for -fcatch-undefined-behavior,
-faddress-sanitizer and -fthread-sanitizer now that they don't do anything.
llvm-svn: 167413
Clang will now honor the FP_CONTRACT pragma and emit LLVM
fmuladd intrinsics for expressions of the form A * B + C (when they occur in a
single statement).
llvm-svn: 164989
the trap BB out of the individual checks and into a common function, to prepare
for making this code call into a runtime library. Rename the existing EmitCheck
to EmitTypeCheck to clarify it and to move it out of the way of the new
EmitCheck.
llvm-svn: 163451
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
by this mode, and also check for signed left shift overflow. The rules for the
latter are a little subtle:
* neither C89 nor C++98 specify the behavior of a signed left shift at all
* in C99 and C11, shifting a 1 bit into the sign bit has undefined behavior
* in C++11, with core issue 1457, shifting a 1 bit *out* of the sign bit has
undefined behavior
As of this change, we use the C99 rules for all C language variants, and the
C++11 rules for all C++ language variants. Once we have individual
-fcatch-undefined-behavior= flags, this should be revisited.
llvm-svn: 162634
* when checking that a pointer or reference refers to appropriate storage for a type, also check the alignment and perform a null check
* check that references are bound to appropriate storage
* check that 'this' has appropriate storage in member accesses and member function calls
llvm-svn: 162523
In addition, I've made the pointer and reference typedef 'void' rather than T*
just so they can't get misused. I would've omitted them entirely but
std::distance likes them to be there even if it doesn't use them.
This rolls back r155808 and r155869.
Review by Doug Gregor incorporating feedback from Chandler Carruth.
llvm-svn: 158104
filter_decl_iterator had a weird mismatch where both op* and op-> returned T*
making it difficult to generalize this filtering behavior into a reusable
library of any kind.
This change errs on the side of value, making op-> return T* and op* return
T&.
(reviewed by Richard Smith)
llvm-svn: 155808
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
we correctly emit loads of BlockDeclRefExprs even when they
don't qualify as ODR-uses. I think I'm adequately convinced
that BlockDeclRefExpr can die.
llvm-svn: 152479
- This function is not at all free; pass it around along some hot paths instead
of recomputing it deep inside various VarDecl methods.
llvm-svn: 152363
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
scalar emission of DeclRefExprs to const bools: emit scalar bools as i1,
not as i8.
In addition to the extra unit testing, this has successfully bootstrapped.
llvm-svn: 151955
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131