This patch adds support for codegen of 'target parallel' on the host.
It is also the first combined directive that requires two or more
captured statements. Support for this functionality is included in
the patch.
A combined directive such as 'target parallel' has two captured
statements, one for the 'target' and the other for the 'parallel'
region. Two captured statements are required because each has
different implicit parameters (see SemaOpenMP.cpp). For example,
the 'parallel' has 'global_tid' and 'bound_tid' while the 'target'
does not. The patch adds support for handling multiple captured
statements based on the combined directive.
When codegen'ing the 'target parallel' directive, the 'target'
outlined function is created using the outer captured statement
and the 'parallel' outlined function is created using the inner
captured statement.
Reviewers: ABataev
Differential Revision: https://reviews.llvm.org/D28753
llvm-svn: 292374
Summary:
We do not currently track the source locations for exception specifications such
that their source range can be queried through the AST. This leads to trying to
write more complex code to determine the source range for uses like FixItHints
(see D18575 for an example). In addition to use within tools like clang-tidy, I
think this information may become more important to track as exception
specifications become more integrated into the type system.
Patch by Don Hinton.
Reviewers: rsmith
Subscribers: malcolm.parsons, sbarzowski, alexfh, hintonda, cfe-commits
Differential Revision: https://reviews.llvm.org/D20428
llvm-svn: 291771
This patch is to implement sema and parsing for 'target teams distribute simd’ pragma.
Differential Revision: https://reviews.llvm.org/D28252
llvm-svn: 291579
This patch is to implement sema and parsing for 'target teams distribute parallel for simd’ pragma.
Differential Revision: https://reviews.llvm.org/D28202
llvm-svn: 290862
This patch is to implement sema and parsing for 'target teams distribute parallel for’ pragma.
Differential Revision: https://reviews.llvm.org/D28160
llvm-svn: 290725
This patch is to implement sema and parsing for 'target teams distribute' pragma.
Differential Revision: https://reviews.llvm.org/D28015
llvm-svn: 290508
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
This is a re-commit of r290080 (reverted in r290092) with a fix for a
use-after-lifetime bug.
llvm-svn: 290203
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
llvm-svn: 290080
lambda expression is instantiated.
Rather than waiting until Sema::CheckCXXDefaultArgExpr tries to
transform the default arguments (which fails because it can't get the
template arguments that are used), transform the default arguments
earlier when the lambda expression is transformed in
TransformLambdaExpr.
rdar://problem/27535319
Differential Revision: https://reviews.llvm.org/D23096
llvm-svn: 289990
initialization of each array element:
* ArrayInitLoopExpr is a prvalue of array type with two subexpressions:
a common expression (an OpaqueValueExpr) that represents the up-front
computation of the source of the initialization, and a subexpression
representing a per-element initializer
* ArrayInitIndexExpr is a prvalue of type size_t representing the current
position in the loop
This will be used to replace the creation of explicit index variables in lambda
capture of arrays and copy/move construction of classes with array elements,
and also C++17 structured bindings of arrays by value (which inexplicably allow
copying an array by value, unlike all of C++'s other array declarations).
No uses of these nodes are introduced by this change, however.
llvm-svn: 289413
Other compilers accept invalid code here that we reject, and we need a
better error message to try to convince users that the code is really
incorrect. Consider:
class Foo {
typedef MyIterHelper<Foo> iterator;
friend class iterator;
};
Previously our wording was "elaborated type refers to a typedef".
"elaborated type" isn't widely known terminology, so the new diagnostic
says "typedef 'iterator' cannot be referenced with class specifier".
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D25216
llvm-svn: 289259
This patch is to implement sema and parsing for 'teams distribute parallel for' pragma.
Differential Revision: https://reviews.llvm.org/D27345
llvm-svn: 289179
This patch is to implement sema and parsing for 'teams distribute parallel for simd' pragma.
Differential Revision: https://reviews.llvm.org/D27084
llvm-svn: 288294
Summary:
This patch adds semantic checking and building of the fall-through `co_return;` statement as well as the `p.set_exception(std::current_exception())` call for handling uncaught exceptions.
The fall-through statement is built and checked according to:
> [dcl.fct.def.coroutine]/4
> The unqualified-ids return_void and return_value are looked up in the scope of class P. If
> both are found, the program is ill-formed. If the unqualified-id return_void is found, flowing
> off the end of a coroutine is equivalent to a co_return with no operand. Otherwise, flowing off
> the end of a coroutine results in undefined behavior.
Similarly the `set_exception` call is only built when that unqualified-id is found in the scope of class P.
Additionally this patch adds fall-through warnings for non-void returning coroutines. Since it's surprising undefined behavior I thought it would be important to add the warning right away.
Reviewers: majnemer, GorNishanov, rsmith
Subscribers: mehdi_amini, cfe-commits
Differential Revision: https://reviews.llvm.org/D25349
llvm-svn: 285271
This has the following ABI impact:
1) Functions whose parameter or return types are non-throwing function pointer
types have different manglings in c++1z mode from prior modes. This is
necessary because c++1z permits overloading on the noexceptness of function
pointer parameter types. A warning is issued for cases that will change
manglings in c++1z mode.
2) Functions whose parameter or return types contain instantiation-dependent
exception specifications change manglings in all modes. This is necessary
to support overloading on / SFINAE in these exception specifications, which
a careful reading of the standard indicates has essentially always been
permitted.
Note that, in order to be affected by these changes, the code in question must
specify an exception specification on a function pointer/reference type that is
written syntactically within the declaration of another function. Such
declarations are very rare, and I have so far been unable to find any code
that would be affected by this. (Note that such things will probably become
more common in C++17, since it's a lot easier to get a noexcept function type
as a function parameter / return type there.)
This change does not affect the set of symbols produced by a build of clang,
libc++, or libc++abi.
llvm-svn: 285150
has no field declaration.
This commit fixes an invalid Winitializer-overrides warning that's shown
when analyzing a second (or any after the first) instantiation of a designated
initializer. This invalid warning is fixed by making sure that a
DesignatedInitExpr is rebuilt by the tree transformer when it has a field
designator whose FieldDecl* hasn't been yet initialized. This ensures that a
different DesignatedInitExpr is processed by Sema for every instantiation, and
thus the invalid warning is avoided.
rdar://28768441
Differential Revision: https://reviews.llvm.org/D25777
llvm-svn: 284959
corresponding arguments are unexpanded pack expansions, we can compute the
result without substituting them. This significantly improves the memory usage
and performance of make_integer_sequence implementations that do this kind of
thing:
using result = integer_sequence<T, Ns ..., sizeof...(Ns) + Ns ...>;
... but note that such an implementation will still perform O(sizeof...(Ns)^2)
work while building the second pack expansion (we just have a somewhat lower
constant now).
In principle we could get this down to linear time by caching whether the
number of expansions of a pack is constant, or checking whether we're within an
alias template before scanning the pack for pack expansions (since that's the
only case in which we do substitutions within a dependent context at the
moment), but this patch doesn't attempt that.
llvm-svn: 284653
We also need to add ObjCTypeParamTypeLoc. ObjCTypeParamType supports the
representation of "T <protocol>" where T is a type parameter. Before this,
we use TypedefType to represent the type parameter for ObjC.
ObjCTypeParamType has "ObjCTypeParamDecl *OTPDecl" and it extends from
ObjCProtocolQualifiers. It is a non-canonical type and is canonicalized
to the underlying type with the protocol qualifiers.
rdar://24619481
rdar://25060179
Differential Revision: http://reviews.llvm.org/D23079
llvm-svn: 281355
Fix crash-on-invalid in ObjC Sema by avoiding to rebuild a message
expression to a 'super' class in case the method to call does not exist
(i.e. comes from another missing identifier).
In this case, the typo transform is invoked upon the message expression
in an attempt to solve a typo in a 'super' call parameters, but it
crashes since it assumes the method to call has a valid declaration.
rdar://problem/27305403
llvm-svn: 279481
This reverts commit r279003 as it breaks some of our buildbots (e.g.
clang-cmake-aarch64-quick, clang-x86_64-linux-selfhost-modules).
The error is in OpenMP/teams_distribute_simd_ast_print.cpp:
clang: /home/buildslave/buildslave/clang-cmake-aarch64-quick/llvm/include/llvm/ADT/DenseMap.h:527:
bool llvm::DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT>::LookupBucketFor(const LookupKeyT&, const BucketT*&) const
[with LookupKeyT = clang::Stmt*; DerivedT = llvm::DenseMap<clang::Stmt*, long unsigned int>;
KeyT = clang::Stmt*; ValueT = long unsigned int;
KeyInfoT = llvm::DenseMapInfo<clang::Stmt*>;
BucketT = llvm::detail::DenseMapPair<clang::Stmt*, long unsigned int>]:
Assertion `!KeyInfoT::isEqual(Val, EmptyKey) && !KeyInfoT::isEqual(Val, TombstoneKey) &&
"Empty/Tombstone value shouldn't be inserted into map!"' failed.
llvm-svn: 279045
This patch is to implement sema and parsing for 'teams distribute simd’ pragma.
This patch is originated by Carlo Bertolli.
Differential Revision: https://reviews.llvm.org/D23528
llvm-svn: 279003
Functions of Sema that work with building of nested name specifiers have too
many parameters (BuildCXXNestedNameSpecifier already expects 10 arguments).
With this change the information about identifier and its context is packed
into a structure, which is then passes to the semantic functions.
llvm-svn: 277976
This patch adds a new AST node: ObjCAvailabilityCheckExpr, and teaches the
Parser and Sema to generate it. This node represents an availability check of
the form:
@available(macos 10.10, *);
Which will eventually compile to a runtime check of the host's OS version. This
is the first patch of the feature I proposed here:
http://lists.llvm.org/pipermail/cfe-dev/2016-July/049851.html
Differential Revision: https://reviews.llvm.org/D22171
llvm-svn: 275654
This patch is to implement sema and parsing for 'target parallel for simd' pragma.
Differential Revision: http://reviews.llvm.org/D22096
llvm-svn: 275365
http://reviews.llvm.org/D21904
This patch is similar to the implementation of 'private' clause: it adds a list of private pointers to be used within the target data region to store the device pointers returned by the runtime.
Please refer to the following document for a full description of what the runtime witll return in this case (page 10 and 11):
https://github.com/clang-omp/OffloadingDesign
I am happy to answer any question related to the runtime interface to help reviewing this patch.
llvm-svn: 275271
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute simd'.
Differential Revision: http://reviews.llvm.org/D22007
llvm-svn: 274604
The problem is that the parameter pack in a function type type alias is not
reexpanded after being transformed. Also remove an incorrect comment in a
similar function. Fixes PR26017.
Differential Revision: http://reviews.llvm.org/D21030
llvm-svn: 274566
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute parallel for simd'.
Differential Revision: http://reviews.llvm.org/D21977
llvm-svn: 274530
No semantic analysis yet.
This is a pain to disambiguate correctly, because the parsing rules for the
declaration form of a condition and of an init-statement are quite different --
for a token sequence that looks like a declaration, we frequently need to
disambiguate all the way to the ')' or ';'.
We could do better here in some cases by stopping disambiguation once we've
decided whether we've got an expression or not (rather than keeping going until
we know whether it's an init-statement declaration or a condition declaration),
by unifying our parsing code for the two types of declaration and moving the
syntactic checks into Sema; if this has a measurable impact on parsing
performance, I'll look into that.
llvm-svn: 274169
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
[OpenMP] Initial implementation of parse and sema for composite pragma 'distribute parallel for'
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273884
http://reviews.llvm.org/D21564
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273705
-Wfor-loop-analysis warnings for a for-loop with a condition variable. In such
a case, the loop condition variable is modified on each iteration of the loop
by definition.
Original commit message:
Rearrange condition handling so that semantic checks on a condition variable
are performed before the other substatements of the construct are parsed,
rather than deferring them until the end. This allows better error recovery
from semantic errors in the condition, improves diagnostic order, and is a
prerequisite for C++17 constexpr if.
llvm-svn: 273600
are performed before the other substatements of the construct are parsed,
rather than deferring them until the end. This allows better error recovery
from semantic errors in the condition, improves diagnostic order, and is a
prerequisite for C++17 constexpr if.
llvm-svn: 273548
classes.
MSVC actively uses unqualified lookup in dependent bases, lookup at the
instantiation point (non-dependent names may be resolved on things
declared later) etc. and all this stuff is the main cause of
incompatibility between clang and MSVC.
Clang tries to emulate MSVC behavior but it may fail in many cases.
clang could store lexed tokens for member functions definitions within
ClassTemplateDecl for later parsing during template instantiation.
It will allow resolving many possible issues with lookup in dependent
base classes and removing many already existing MSVC-specific
hacks/workarounds from the clang code.
llvm-svn: 272774
Summary:
The patch contains the parsing and sema support for the `from` clause.
Patch based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D18488
llvm-svn: 270882
Summary:
The patch contains the parsing and sema support for the `to` clause.
Patch based on the original post by Kelvin Li.
Reviewers: carlo.bertolli, hfinkel, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D18597
llvm-svn: 270880
Summary:
This patch is to add parsing and sema support for `target update` directive. Support for the `to` and `from` clauses will be added by a different patch. This patch also adds support for other clauses that are already implemented upstream and apply to `target update`, e.g. `device` and `if`.
This patch is based on the original post by Kelvin Li.
Reviewers: hfinkel, carlo.bertolli, kkwli0, arpith-jacob, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D15944
llvm-svn: 270878
This is in preparation for C++ P0136R1, which switches the model for inheriting
constructors over from synthesizing a constructor to finding base class
constructors (via using shadow decls) when looking for derived class
constructors.
llvm-svn: 269231
Support the constexpr specifier on lambda expressions - and support its inference from the lambda call operator's body.
i.e.
auto L = [] () constexpr { return 5; };
static_assert(L() == 5); // OK
auto Implicit = [] (auto a) { return a; };
static_assert(Implicit(5) == 5);
We do not support evaluation of lambda's within constant expressions just yet.
Implementation Strategy:
- teach ParseLambdaExpressionAfterIntroducer to expect a constexpr specifier and mark the invented function call operator's declarator's decl-specifier with it; Have it emit fixits for multiple decl-specifiers (mutable or constexpr) in this location.
- for cases where constexpr is not explicitly specified, have buildLambdaExpr check whether the invented function call operator satisfies the requirements of a constexpr function, by calling CheckConstexprFunctionDecl/Body.
Much obliged to Richard Smith for his patience and his care, in ensuring the code is clang-worthy.
llvm-svn: 264513
Implement lambda capture of *this by copy.
For e.g.:
struct A {
int d = 10;
auto foo() { return [*this] (auto a) mutable { d+=a; return d; }; }
};
auto L = A{}.foo(); // A{}'s lifetime is gone.
// Below is still ok, because *this was captured by value.
assert(L(10) == 20);
assert(L(100) == 120);
If the capture was implicit, or [this] (i.e. *this was captured by reference), this code would be otherwise undefined.
Implementation Strategy:
- amend the parser to accept *this in the lambda introducer
- add a new king of capture LCK_StarThis
- teach Sema::CheckCXXThisCapture to handle by copy captures of the
enclosing object (i.e. *this)
- when CheckCXXThisCapture does capture by copy, the corresponding
initializer expression for the closure's data member
direct-initializes it thus making a copy of '*this'.
- in codegen, when assigning to CXXThisValue, if *this was captured by
copy, make sure it points to the corresponding field member, and
not, unlike when captured by reference, what the field member points
to.
- mark feature as implemented in svn
Much gratitude to Richard Smith for his carefully illuminating reviews!
llvm-svn: 263921
OpenMP 4.0 allows to define custom reduction operations using '#pragma
omp declare reduction' construct. Patch allows to use this custom
defined reduction operations in 'reduction' clauses.
llvm-svn: 263701
The assert isn't correct since TypeLoc::ObjCObjectTypeLoc doesn't
indicate whether the type is a dependent type. The function returns
false for a type like "<SomeProtocol>" which is a synonym for
"id<SomeProtocol>".
rdar://problem/23838912
Differential Revision: http://reviews.llvm.org/D17355
llvm-svn: 261829
Summary:
This patch adds parsing + sema for the target parallel for directive along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16759
llvm-svn: 259654
Summary:
This patch adds parsing + sema for the target parallel directive and its clauses along with testcases.
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16553
Rebased to current trunk and updated test cases.
llvm-svn: 258832
Summary:
This patch adds parsing + sema for the defaultmap clause associated with the target directive (among others).
Reviewers: ABataev
Differential Revision: http://reviews.llvm.org/D16527
llvm-svn: 258817
Support for the following OpenMP 4.5 restriction on 'target enter data' and 'target exit data':
- A map-type must be specified in all map clauses.
I have to save 'IsMapTypeImplicit' when parsing a map clause to support this constraint and for more informative error messages. This helps me support the following case:
#pragma omp target enter data map(r) // expected-error {{map type must be specified for '#pragma omp target enter data'}}
and distinguish it from:
#pragma omp target enter data map(tofrom: r) // expected-error {{map type 'tofrom' is not allowed for '#pragma omp target enter data'}}
Patch by Arpith Jacob. Thanks!
llvm-svn: 258179
Covers significantly more code in the template template pack argument
test and fixes the resulting assert problem.
Differential Revision: http://reviews.llvm.org/D15743
llvm-svn: 257326
Summary:
Support for OpenCL 2.0 pipe type.
This is a bug-fix version for bader's patch reviews.llvm.org/D14441
Reviewers: pekka.jaaskelainen, Anastasia
Subscribers: bader, Anastasia, cfe-commits
Differential Revision: http://reviews.llvm.org/D15603
llvm-svn: 257254
When the condition in an if statement, while statement, or for loop is created
during template instantiation, it calls MakeFullExpr with only the condition
expression. However, when these conditions are created for non-templated
code in the Parser, an additional SourceLocation is passed to MakeFullExpr.
The impact of this was that non-dependent templated code could produce
diagnostics that the same code outside templates would not. Adding the missing
SourceLocation makes diagnostics consistent between templated and non-templated
code.
llvm-svn: 256976
OpenMP 4.0-3.1 supports the next format of ‘schedule’ clause: schedule(kind[, chunk_size])
Where kind can be one of ‘static’, ‘dynamic’, ‘guided’, ‘auto’ or ‘runtime’.
OpenMP 4.5 defines the format: schedule([modifier [, modifier]:]kind[, chunk_size])
Modifier can be one of ‘monotonic’, ‘nonmonotonic’ or ‘simd’.
llvm-svn: 256487
OpenMP 4.5 adds 'depend(sink:vec)' in 'ordered' directive for doacross loop synchronization. Patch adds parsing and semantic analysis for this clause.
llvm-svn: 256330
OpenMP 4.5 adds 'depend(sink:vec)' in 'ordered' directive for doacross loop synchronization. Patch adds parsing and semantic analysis for this clause.
llvm-svn: 256238
OpenMP 4.5 adds 'depend(source)' clause for 'ordered' directive to support cross-iteration dependence. Patch adds parsing and semantic analysis for this construct.
llvm-svn: 255986
OpenMP 4.5 adds directives 'taskloop' and 'taskloop simd'. These directives support clause 'num_tasks'. Patch adds parsing/semantic analysis for this clause.
llvm-svn: 255008
OpenMP 4.5 adds 'taksloop' and 'taskloop simd' directives, which have 'grainsize' clause. Patch adds parsing/sema analysis of this clause.
llvm-svn: 254903
OpenMP 4.5 adds 'taskloop' and 'taskloop simd' directives. These directives have new 'nogroup' clause. Patch adds basic parsing/sema support for this clause.
llvm-svn: 254899
OpenMP 4.5 defines new clause 'priority' for 'task', 'taskloop' and 'taskloop simd' directives. Added parsing and sema analysis for 'priority' clause in 'task' and 'taskloop' directives.
llvm-svn: 254398
MSVC supports 'property' attribute and allows to apply it to the declaration of an empty array in a class or structure definition.
For example:
```
__declspec(property(get=GetX, put=PutX)) int x[];
```
The above statement indicates that x[] can be used with one or more array indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and p->x[a][b] = i will be turned into p->PutX(a, b, i);
Differential Revision: http://reviews.llvm.org/D13336
llvm-svn: 254067
https://gcc.gnu.org/onlinedocs/gcc/Typeof.html
Differences from the GCC extension:
* __auto_type is also permitted in C++ (but only in places where
it could appear in C), allowing its use in headers that might
be shared across C and C++, or used from C++98
* __auto_type can be combined with a declarator, as with C++ auto
(for instance, "__auto_type *p")
* multiple variables can be declared in a single __auto_type
declaration, with the C++ semantics (the deduced type must be
the same in each case)
This patch also adds a missing restriction on applying typeof to
a bit-field, which GCC has historically rejected in C (due to
lack of clarity as to whether the operand should be promoted).
The same restriction also applies to __auto_type in C (in both
GCC and Clang).
This also fixes PR25449.
Patch by Nicholas Allegra!
llvm-svn: 252690
std::initializer_list<T> type. Instead, the list must contain a single element
and the type is deduced from that.
In Clang 3.7, we warned by default on all the cases that would change meaning
due to this change. In Clang 3.8, we will support only the new rules -- per
the request in N3922, this change is applied as a Defect Report against earlier
versions of the C++ standard.
This change is not entirely trivial, because for lambda init-captures we
previously did not track the difference between direct-list-initialization and
copy-list-initialization. The difference was not previously observable, because
the two forms of initialization always did the same thing (the elements of the
initializer list were always copy-initialized regardless of the initialization
style used for the init-capture).
llvm-svn: 252688
This time, I went with the first approach from
http://reviews.llvm.org/D6700, where clang actually attempts to form an
implicit member reference from an UnresolvedLookupExpr. We know that
there are only two possible outcomes at this point, a DeclRefExpr of the
FieldDecl or an error, but its safer to reuse the existing machinery for
this.
llvm-svn: 250856