These patches were previously reverted as they led to
buildbot time-outs caused by large switch statement in
printAliasInstr when using UBSan and O3. The issue has
been addressed with a workaround (r335525).
llvm-svn: 336079
The variants added by this patch are:
- SQINC signed increment, e.g. sqinc x0, w0, all, mul #4
- SQDEC signed decrement, e.g. sqdec x0, w0, all, mul #4
- UQINC unsigned increment, e.g. uqinc w0, all, mul #4
- UQDEC unsigned decrement, e.g. uqdec w0, all, mul #4
This patch includes asmparser changes to parse a GPR64 as a GPR32 in
order to satisfy the constraint check:
x0 == GPR64(w0)
in:
sqinc x0, w0, all, mul #4
^___^ (must match)
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47716
llvm-svn: 334980
Some instructions require of a limited set of FP immediates as operands,
for example '#0.5 or #1.0' for SVE's FADD instruction.
This patch adds support for parsing and printing such FP immediates as
exact values (e.g. #0.499999 is not accepted for #0.5).
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D47711
llvm-svn: 334826
Print the first indexed element as a FP register, for example:
mov z0.d, z1.d[0]
Is now printed as:
mov z0.d, d1
Next to printing, this patch also adds aliases to parse 'mov z0.d, d1'.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47571
llvm-svn: 333872
Unpredicated copy of optionally-shifted immediate to SVE vector,
along with MOV-aliases.
This patch contains parsing and printing support for
cpy_imm8_opt_lsl_(i8|i16|i32|i64). This operand allows a signed value in
the range -128 to +127. For element widths of 16 bits or higher it may
also be a signed multiple of 256 in the range -32768 to +32512.
For element-width of 8 bits a range of -128 to 255 is accepted, since a copy
of a byte can be considered either signed/unsigned.
Note: This patch renames tryParseAddSubImm() -> tryParseImmWithOptionalShift()
and moves the behaviour of trying to shift a plain immediate by an allowed
shift-value to its addImmWithOptionalShiftOperands() method, so that the
parsing itself is generic and allows immediates from multiple shifted operands.
This is done because an immediate can be divisible by both shifted operands.
Reviewers: rengolin, fhahn, samparker, SjoerdMeijer, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47309
llvm-svn: 333263
Summary:
All variants of isLogicalImm[Not](32|64) can be combined into a single templated function, same for printLogicalImm(32|64).
By making it use a template instead, further SVE patches can use it for other data types as well (e.g. 8, 16 bits).
Reviewers: fhahn, rengolin, aadg, echristo, kristof.beyls, samparker
Reviewed By: samparker
Subscribers: aemerson, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D42294
llvm-svn: 323646
Summary:
This patch adds support for parsing/printing of named or unnamed
patterns that are used in SVE's PTRUE instruction, amongst others.
The pattern can be specified as a named pattern to initialize the predicate
vector or it can be specified as an immediate in the range 0-31.
Reviewers: fhahn, rengolin, evandro, mcrosier, t.p.northover
Reviewed By: fhahn
Subscribers: aemerson, javed.absar, tschuett, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D41818
llvm-svn: 323098
Patch [3/5] in a series to add assembler/disassembler support for AArch64 SVE unpredicated ADD/SUB instructions.
To summarise, this patch adds:
* SVE register definitions
* Methods to parse SVE register operands
* Methods to print SVE register operands
* RegKind SVEDataVector to distinguish it from other data types like scalar register or Neon vector.
* k_SVEDataRegister and SVEDataRegOp to describe SVE registers (which will be extended by further patches with e.g. ElementWidth and the shift-extend type).
Patch by Sander De Smalen.
Reviewed by: rengolin
Differential Revision: https://reviews.llvm.org/D39089
llvm-svn: 317590
New instructions are added to AArch32 and AArch64 to aid
floating-point multiplication and addition of complex numbers,
where the complex numbers are packed in a vector register as a
pair of elements. The Imaginary part of the number is placed in the
more significant element, and the Real part of the number is placed
in the less significant element.
Differential Revision: https://reviews.llvm.org/D36792
llvm-svn: 312228
Most immediates are printed in Aarch64InstPrinter using 'formatImm' macro,
but not all of them.
Implementation contains following rules:
- floating point immediates are always printed as decimal
- signed integer immediates are printed depends on flag settings
(for negative values 'formatImm' macro prints the value as i.e -0x01
which may be convenient when imm is an address or offset)
- logical immediates are always printed as hex
- the 64-bit immediate for advSIMD, encoded in "a🅱️c:d:e:f:g:h" is always printed as hex
- the 64-bit immedaite in exception generation instructions like:
brk, dcps1, dcps2, dcps3, hlt, hvc, smc, svc is always printed as hex
- the rest of immediates is printed depends on availability
of -print-imm-hex
Signed-off-by: Maciej Gabka <maciej.gabka@arm.com>
Signed-off-by: Paul Osmialowski <pawel.osmialowski@arm.com>
Differential Revision: http://reviews.llvm.org/D16929
llvm-svn: 269446
The Statistical Profiling Extension is an optional extension to
ARMv8.2-A. Since it is an optional extension, I have added the
FeatureSPE subtarget feature to control it. The assembler-visible parts
of this extension are the new "psb csync" instruction, which is
equivalent to "hint #17", and a number of system registers.
Differential Revision: http://reviews.llvm.org/D15021
llvm-svn: 254401
ARMv8.2-A adds the "dc cvap" instruction, which is a system instruction
that cleans caches to the point of persistence (for systems that have
persistent memory). It is a required part of ARMv8.2-A, so no additional
subtarget features are required.
Differential Revision: http://reviews.llvm.org/D15016
llvm-svn: 254156
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
per-function subtarget.
Currently, code-gen passes the default or generic subtarget to the constructors
of MCInstPrinter subclasses (see LLVMTargetMachine::addPassesToEmitFile), which
enables some targets (AArch64, ARM, and X86) to change their instprinter's
behavior based on the subtarget feature bits. Since the backend can now use
different subtargets for each function, instprinter has to be changed to use the
per-function subtarget rather than the default subtarget.
This patch takes the first step towards enabling instprinter to change its
behavior based on the per-function subtarget. It adds a bit "PassSubtarget" to
AsmWriter which tells table-gen to pass a reference to MCSubtargetInfo to the
various print methods table-gen auto-generates.
I will follow up with changes to instprinters of AArch64, ARM, and X86.
llvm-svn: 233411
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
llvm-svn: 209576
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192361
Including following 14 instructions:
4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers.
ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4).
4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers.
st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4).
llvm-svn: 192352
Previously we modelled VPR128 and VPR64 as essentially identical
register-classes containing V0-V31 (which had Q0-Q31 as "sub_alias"
sub-registers). This model is starting to cause significant problems
for code generation, particularly writing EXTRACT/INSERT_SUBREG
patterns for converting between the two.
The change here switches to classifying VPR64 & VPR128 as
RegisterOperands, which are essentially aliases for RegisterClasses
with different parsing and printing behaviour. This fits almost
exactly with their real status (VPR128 == FPR128 printed strangely,
VPR64 == FPR64 printed strangely).
llvm-svn: 190665
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187567
This moves the bit twiddling and string fiddling functions required by other
parts of the backend into a separate library. Previously they resided in
AArch64Desc, which created a circular dependency between various components.
llvm-svn: 174369
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
llvm-svn: 174054