Commit Graph

4 Commits

Author SHA1 Message Date
Chandler Carruth c213c67df8 [PM] Fix a nasty bug in the new PM where we failed to properly
invalidation of analyses when merging SCCs.

While I've added a bunch of testing of this, it takes something much
more like the inliner to really trigger this as you need to have
partially-analyzed SCCs with updates at just the right time. So I've
added a direct test for this using the inliner and verifying the
domtree. Without the changes here, this test ends up finding a stale
dominator tree.

However, to handle this properly, we need to invalidate analyses
*before* merging the SCCs. After talking to Philip and Sanjoy about this
they convinced me this was the right approach. To do this, we need
a callback mechanism when merging SCCs so we can observe the cycle that
will be merged before the merge happens. This API update ended up being
surprisingly easy.

With this commit, the new PM passes the test-suite again. It hadn't
since MemorySSA was enabled for EarlyCSE as that also will find this bug
very quickly.

llvm-svn: 307498
2017-07-09 13:45:11 +00:00
Chandler Carruth bd9c29039e [PM] Finish implementing and fix a chain of bugs uncovered by testing
the invalidation propagation logic from an SCC to a Function.

I wrote the infrastructure to test this but didn't actually use it in
the unit test where it was designed to be used. =[ My bad. Once
I actually added it to the test case I discovered that it also hadn't
been properly implemented, so I've implemented it. The logic in the FAM
proxy for an SCC pass to propagate invalidation follows the same ideas
as the FAM proxy for a Module pass, but the implementation is a bit
different to reflect the fact that it is forwarding just for an SCC.

However, implementing this correctly uncovered a surprising "bug" (it
was conservatively correct but relatively very expensive) in how we
handle invalidation when splitting one SCC into multiple SCCs. We did an
eager invalidation when in reality we should be deferring invaliadtion
for the *current* SCC to the CGSCC pass manager and just invaliating the
newly constructed SCCs. Otherwise we end up invalidating too much too
soon. This was exposed by the inliner test case that I've updated. Now,
we invalidate *just* the split off '(test1_f)' SCC when doing the CG
update, and then the inliner finishes and invalidates the '(test1_g,
test1_h)' SCC's analyses. The first few attempts at fixing this hit
still more bugs, but all of those are covered by existing tests. For
example, the inliner should also preserve the FAM proxy to avoid
unnecesasry invalidation, and this is safe because the CG update
routines it uses handle any necessary adjustments to the FAM proxy.

Finally, the unittests for the CGSCC pass manager needed a bunch of
updates where we weren't correctly preserving the FAM proxy because it
hadn't been fully implemented and failing to preserve it didn't matter.

Note that this doesn't yet fix the current crasher due to MemSSA finding
a stale dominator tree, but without this the fix to that crasher doesn't
really make any sense when testing because it relies on the proxy
behavior.

llvm-svn: 307487
2017-07-09 03:59:31 +00:00
Chandler Carruth 20e588e1af [PM/Inliner] Make the new PM's inliner process call edges across an
entire SCC before iterating on newly-introduced call edges resulting
from any inlined function bodies.

This more closely matches the behavior of the old PM's inliner. While it
wasn't really clear to me initially, this behavior is actually essential
to the inliner behaving reasonably in its current design.

Because the inliner is fundamentally a bottom-up inliner and all of its
cost modeling is designed around that it often runs into trouble within
an SCC where we don't have any meaningful bottom-up ordering to use. In
addition to potentially cyclic, infinite inlining that we block with the
inline history mechanism, it can also take seemingly simple call graph
patterns within an SCC and turn them into *insanely* large functions by
accidentally working top-down across the SCC without any of the
threshold limitations that traditional top-down inliners use.

Consider this diabolical monster.cpp file that Richard Smith came up
with to help demonstrate this issue:
```
template <int N> extern const char *str;

void g(const char *);

template <bool K, int N> void f(bool *B, bool *E) {
  if (K)
    g(str<N>);
  if (B == E)
    return;
  if (*B)
    f<true, N + 1>(B + 1, E);
  else
    f<false, N + 1>(B + 1, E);
}
template <> void f<false, MAX>(bool *B, bool *E) { return f<false, 0>(B, E); }
template <> void f<true, MAX>(bool *B, bool *E) { return f<true, 0>(B, E); }

extern bool *arr, *end;
void test() { f<false, 0>(arr, end); }
```

When compiled with '-DMAX=N' for various values of N, this will create an SCC
with a reasonably large number of functions. Previously, the inliner would try
to exhaust the inlining candidates in a single function before moving on. This,
unfortunately, turns it into a top-down inliner within the SCC. Because our
thresholds were never built for that, we will incrementally decide that it is
always worth inlining and proceed to flatten the entire SCC into that one
function.

What's worse, we'll then proceed to the next function, and do the exact same
thing except we'll skip the first function, and so on. And at each step, we'll
also make some of the constant factors larger, which is awesome.

The fix in this patch is the obvious one which makes the new PM's inliner use
the same technique used by the old PM: consider all the call edges across the
entire SCC before beginning to process call edges introduced by inlining. The
result of this is essentially to distribute the inlining across the SCC so that
every function incrementally grows toward the inline thresholds rather than
allowing the inliner to grow one of the functions vastly beyond the threshold.
The code for this is a bit awkward, but it works out OK.

We could consider in the future doing something more powerful here such as
prioritized order (via lowest cost and/or profile info) and/or a code-growth
budget per SCC. However, both of those would require really substantial work
both to design the system in a way that wouldn't break really useful
abstraction decomposition properties of the current inliner and to be tuned
across a reasonably diverse set of code and workloads. It also seems really
risky in many ways. I have only found a single real-world file that triggers
the bad behavior here and it is generated code that has a pretty pathological
pattern. I'm not worried about the inliner not doing an *awesome* job here as
long as it does *ok*. On the other hand, the cases that will be tricky to get
right in a prioritized scheme with a budget will be more common and idiomatic
for at least some frontends (C++ and Rust at least). So while these approaches
are still really interesting, I'm not in a huge rush to go after them. Staying
even closer to the existing PM's behavior, especially when this easy to do,
seems like the right short to medium term approach.

I don't really have a test case that makes sense yet... I'll try to find a
variant of the IR produced by the monster template metaprogram that is both
small enough to be sane and large enough to clearly show when we get this wrong
in the future. But I'm not confident this exists. And the behavior change here
*should* be unobservable without snooping on debug logging. So there isn't
really much to test.

The test case updates come from two incidental changes:
1) We now visit functions in an SCC in the opposite order. I don't think there
   really is a "right" order here, so I just update the test cases.
2) We no longer compute some analyses when an SCC has no call instructions that
   we consider for inlining.

llvm-svn: 297374
2017-03-09 11:35:40 +00:00
Chandler Carruth b698d5964d [PM] Fix a really nasty bug introduced when adding PGO support to the
new PM's inliner.

The bug happens when we refine an SCC after having computed a proxy for
the FunctionAnalysisManager, and then proceed to compute fresh analyses
for functions in the *new* SCC using the manager provided by the old
SCC's proxy. *And* when we manage to mutate a function in this new SCC
in a way that invalidates those analyses. This can be... challenging to
reproduce.

I've managed to contrive a set of functions that trigger this and added
a test case, but it is a bit brittle. I've directly checked that the
passes run in the expected ways to help avoid the test just becoming
silently irrelevant.

This gets the new PM back to passing the LLVM test suite after the PGO
improvements landed.

llvm-svn: 292757
2017-01-22 10:34:01 +00:00