the changes in r233255/r233258. Normally if lldb attaches to
a running process, when we call Process::Destroy, we want to detach
from the process. If lldb launched the process itself, ::Destroy
should kill it.
However, if we attach to a process and the driver calls SBProcess::Kill()
(which calls Destroy), we need to kill it even if we didn't launch it
originally.
The force_kill param allows for the SBProcess::Kill method to force the
behavior of Destroy.
<rdar://problem/20424439>
llvm-svn: 235158
Linux arm don't support hardware stepping (neither mismatch
breakpoints). This patch implement signle stepping with doing a software
emulation of the next instruction and then setting a temporary
breakpoint at the address where the thread will stop next.
Differential revision: http://reviews.llvm.org/D8976
llvm-svn: 234987
Plan is to have this initialized on a per-process basis somewhat the same as the ObjC library on module loading, but this commit is simply the foundation work and will be incrementally built upon to add that detection functionality.
Differential Revision: http://reviews.llvm.org/D8896
llvm-svn: 234503
In an effort to reduce binary size for components not wishing to
link against all of LLDB, as well as a parallel effort to reduce
link dependencies on Python, this patch splits out the notion of
LLDB initialization into "full" and "common" initialization.
All code related to initializing the full LLDB suite lives directly
in API now. Previously it was only referenced from API, but because
it was defined in lldbCore, it would get implicitly linked against
by everything including lldb-server, causing a considerable
increase in binary size.
By moving this to the API layer, it also creates a better layering
for the ongoing effort to make the embedded interpreter replacable
with one from a different language (or even be completely removeable).
One semantic change necessary to get this all working was to remove
the notion of a shared debugger refcount. The debugger is either
initialized or uninitialized now, and calling Initialize() multiple
times will simply have no effect, while the first Terminate() will
now shut it down no matter how many times Initialize() was called.
This behaves nicely with all of our supported usage patterns though,
and allows us to fix a number of nasty hacks from before.
Differential Revision: http://reviews.llvm.org/D8462
llvm-svn: 233758
Summary:
Previously lldb-mi contains a stub for that but it didn't work and all CommanInterpreter's events were ignored.
This commit adds a handling of CommandInterpreter's events in lldb-mi.
Steps:
# Fix CMICmnLLDBDebugger::InitSBListener
# Add SBCommandInterpreter::EventIsCommandInterpreterEvent
# Exit on lldb::SBCommandInterpreter::eBroadcastBitQuitCommandReceived
All tests pass on OS X.
In further we can remove "quit" hack in lldb-mi.
Test Plan:
# Create start_script file:
```
target create ~/p/hello
b main
r
quit
```
# Run lldb-mi --interpreter
# Execute start_script file by following command:
```
-interpreter-exec console "command source start_script"
```
Log:
```
$ bin/lldb-mi --interpreter
(gdb)
-interpreter-exec console "command source start_script"
Executing commands in '/Users/IliaK/p/llvm/build_ninja/start_script'.
(lldb) target create ~/p/hello
Current executable set to '~/p/hello' (x86_64).
(lldb) b main
Breakpoint 1: where = hello`main + 29 at hello.cpp:12, address = 0x0000000100000e2d
(lldb) r
Process 1582 launched: '/Users/IliaK/p/hello' (x86_64)
(lldb) quit
^done
(gdb)
=thread-created,id="1",group-id="i1"
=thread-selected,id="1"
(gdb)
=shlibs-added,shlib-info=[num="1",name="hello",dyld-addr="-",reason="dyld",path="/Users/IliaK/p/hello",loaded_addr="-",dsym-objpath="/Users/IliaK/p/hello.dSYM/Contents/Resources/DWARF/hello"]
...
=shlibs-added,shlib-info=[num="132",name="libDiagnosticMessagesClient.dylib",dyld-addr="0x7fff91705000",reason="dyld",path="/usr/lib/libDiagnosticMessagesClient.dylib",loaded_addr="0x7fff91705000"]
(gdb)
*stopped,reason="breakpoint-hit",disp="del",bkptno="1",frame={addr="0x100000e2d",func="main",args=[{name="argc",value="1"},{name="argv",value="0x00007fff5fbffc88"}],file="hello.cpp",fullname="/Users/IliaK/p/hello.cpp",line="12"},thread-id="1",stopped-threads="all"
(gdb)<press Enter>
MI: Program exited OK
```
Reviewers: abidh, clayborg
Reviewed By: abidh
Subscribers: jingham, lldb-commits, clayborg, abidh
Differential Revision: http://reviews.llvm.org/D8382
llvm-svn: 232891
This creates a new top-level folder called Initialization which
is intended to hold code specific to LLDB system initialization.
Currently this holds the Initialize() and Terminate() functions,
as well as the fatal error handler.
This provides a means to break the massive dependency cycle which
is caused by the fact that Debugger depends on Initialize and
Terminate which then depends on the entire LLDB project. With
this structure, it will be possible for applications to invoke
lldb_private::Initialize() directly, and have that invoke
Debugger::Initialize.
llvm-svn: 232768
Summary:
sc.block->AppendVariables(...) returns 0 if there are no arguments or local
variables, but we still need to check for global variables.
Test Plan:
```
$ cat test.cpp
int i;
int main() {
}
$ lldb test -o 'b main' -o r
(lldb) script
>>> print lldb.frame.FindValue('i', lldb.eValueTypeVariableGlobal)
(int) i = 0 # as opposed to "No value"
```
Reviewers: jingham, ovyalov, vharron, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8464
llvm-svn: 232767
# Fix CommandInterpreter.Broadcaster name (it should be the same as CommandInterpreter::GetStaticBroadcasterClass())
# Prevent the same error in Process.Broadcaster
# Fix SBCommandInterpreter::GetBroadcasterClass (it should call CommandInterpreter::GetStaticBroadcasterClass(), was Communication::GetStaticBroadcasterClass())
llvm-svn: 232500
Summary:
Also, change its return type to size_t to match the return types of
its callers.
With this change, std::vector and std::list data formatter tests
pass on Linux (when using libstdc++) with clang as well as with gcc.
These tests have also been enabled in this patch.
Test Plan: dotest.py -p <TestDataFormatterStdVector|TestDataFormatterStdList>
Reviewers: vharron, clayborg
Reviewed By: clayborg
Subscribers: zturner, lldb-commits
Differential Revision: http://reviews.llvm.org/D8337
llvm-svn: 232399
This works by creating a command backed by a class whose interface should - at least - include
def __init__(self, debugger, session_dict)
def __call__(self, args, return_obj, exe_ctx)
What works:
- adding a command via command script add --class
- calling a thusly created command
What is missing:
- support for custom help
- test cases
The missing parts will follow over the next couple of days
This is an improvement over the existing system as:
a) it provides an obvious location for commands to provide help strings (i.e. methods)
b) it allows commands to store state in an obvious fashion
c) it allows us to easily add features to script commands over time (option parsing and subcommands registration, I am looking at you :-)
llvm-svn: 232136
Debugger.h is a huge file that gets included everywhere, and
FormatManager.h brings in a ton of unnecessary stuff and doesn't
even use anything from it in the header.
llvm-svn: 231161
This continues the effort to reduce header footprint and improve
build speed by removing clang and other unnecessary headers
from Target.h. In one case, some headers were included solely
for the purpose of declaring a nested class in Target, which was
not needed by anybody outside the class. In this case the
definition and implementation of the nested class were isolated
in the .cpp file so the header could be removed.
llvm-svn: 231107
This is part of a larger effort to reduce header file footprints.
Combined, these patches reduce the build time of LLDB locally by
over 30%. However, they touch many files and make many changes,
so will be submitted in small incremental pieces.
Reviewed By: Greg Clayton
Differential Revision: http://reviews.llvm.org/D8022
llvm-svn: 231097
Summary:
Before this fix the FileSpec::GetPath() returned string which might be without '\0' at the end.
It could have happened if the size of buffer for path was less than actual path.
Test case:
```
FileSpec test("/path/to/file", false);
char buf[]="!!!!!!";
test.GetPath(buf, 3);
```
Before fix:
```
233 FileSpec test("/path/to/file", false);
234 char buf[]="!!!!!!";
235 test.GetPath(buf, 3);
236
-> 237 if (core_file)
238 {
239 if (!core_file.Exists())
240 {
(lldb) print buf
(char [7]) $0 = "/pa!!!"
```
After fix:
```
233 FileSpec test("/path/to/file", false);
234 char buf[]="!!!!!!";
235 test.GetPath(buf, 3);
236
-> 237 if (core_file)
238 {
239 if (!core_file.Exists())
240 {
(lldb) print buf
(char [7]) $0 = "/p"
```
Reviewers: zturner, abidh, clayborg
Reviewed By: abidh, clayborg
Subscribers: tberghammer, vharron, lldb-commits, clayborg, zturner, abidh
Differential Revision: http://reviews.llvm.org/D7553
llvm-svn: 230787
Summary:
The code for GetSyntheticArrayMemberFromPointer and
GetSyntheticArrayMemberFromArray was identical, so just collapse the
the methods into one.
Reviewers: granata.enrico, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7911
llvm-svn: 230708
This resubmits r230380. The primary cause of the failure was
actually just a warning, which we can disable at the CMake level
in a followup patch on the LLVM side. The other thing which was
actually an error on the bot should be able to be fixed with
a clean.
llvm-svn: 230389
An OBJECT library is a special type of CMake library that produces
no archive, has no link interface, and no link inputs. It is like
a regular archive, just without the physical output. To link
against an OBJECT library, you reference it in the *source* file
list of a library using the special syntax $<TARGET_OBJECTS:lldbAPI>.
This will cause every object file to be passed to the linker
independently, as opposed to a single archive being passed to the
linker.
This is *extremely* important on Windows. lldbAPI exports all of the
SB classes using __declspec(dllexport). Unfortunately for technical
reasons it is not possible (well, extremely difficult) to get the
linker to propagate a __declspec(dllexport) attribute from a symbol
in an object file in an archive to a DLL that links against that
archive. The solution to this is for the DLL to link the object files
directly. So lldbAPI must be an OBJECT library.
This fixes an issue that has been present since the duplicated
lldbAPI file lists were removed, which would cause linker failures.
As a side effect, this also makes LLDB_DISABLE_PYTHON=1 work again
on Windows, which was previously totally broken.
llvm-svn: 230380
Previously the CMake had a lot of duplication for the public API
due to some differences regarding how we link on Windows. This
fixes the issue, so making changes to the public API should be
much easier now.
llvm-svn: 229568
Reverting this commit led to other failures which I did not see at
first. This turned out to be an easy problem to fix, so I added
SBVariablesOptions.cpp to the CMakeLists.txt. In the future please
try to make sure new files are added to CMake.
llvm-svn: 229516
changing it was in r219544 - after living on that for a few
months, I wanted to take another crack at this.
The disassembly-format setting still exists and the old format
can be user specified with a setting like
${current-pc-arrow}${addr-file-or-load}{ <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>}:
This patch was discussed in http://reviews.llvm.org/D7578
<rdar://problem/19726421>
llvm-svn: 229186
Summary:
This patch adds -exec-arguments command for lldb-mi. -exec-arguments command allows to specify arguments for executable file in MI mode. Also it contains tests for that command.
Btw, new added files was formatted by clang-format.
Reviewers: abidh, zturner, clayborg
Reviewed By: clayborg
Subscribers: zturner, emaste, clayborg, jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D6965
llvm-svn: 229110
We talked about it internally - and came to the conclusion that it's time to have an options class
This commit adds an SBVariablesOptions class and goes through all the required dance
llvm-svn: 228975
SBTarget::BreakpointCreateBySourceRegex that takes file spec lists to the Python interface,
and add a test for this.
<rdar://problem/19805037>
llvm-svn: 228938
Rules for returning "const char *" from functions in the public lldb::SB* API are that you must constify the string using "ConstString(cstr).GetCString()" and return that. This puts the string into a string pool that never goes away. This is only when there is nothing that can hold onto the string. It is OK to specify that a string value lives as long as its SB class counterpart, but this should be made clear in the API if this is done. Many classes already constify their strings (symbol mangled and demangled names, variable names, type names, etc), so be sure to verify you string isn't already constified before you re-constify it. It won't do any harm to re-constify it, it will just cause you a little performance by having to rehash the string.
llvm-svn: 228867
SBProcess uses 2 mutexex; RunLock and APILock. Apart from 2 places, RunLock
is locked before API lock. I have fixed the 2 places where order was different.
I observed a deadlock due to this different order in lldb-mi once. Although
lldb-mi command and event thread dont run at the same time now. So it can not deadlock
there but can still be problem for some other clients.
Pre-approved by Greg in http://lists.cs.uiuc.edu/pipermail/lldb-dev/2015-February/006509.html
llvm-svn: 228844
A runtime support value is a ValueObject whose only purpose is to support some language runtime's operation, but it does not directly provide any user-visible benefit
As such, unless the user is working on the runtime support, it is mostly safe for them not to see such a value when debugging
It is a language runtime's job to check whether a ValueObject is a support value, and that - in conjunction with a target setting - is used by frame variable and target variable
SBFrame::GetVariables gets a new overload with yet another flag to dictate whether to return those support values to the caller - that which defaults to the setting's value
rdar://problem/15539930
llvm-svn: 228791
Summary:
These changes include:
* Fix -var-create to be able use current frame '*' (MI)
* Fix print-values option in -var-update (MI)
* Fix 'variable doesn't exist' error in -var-show-attributes (MI)
* Mark print-values option as 'handled-by-cmd' in -var-update (MI)
* Fix SBValue::GetValueDidChange if value was changed
* Fix lldb-mi: -data-evaluate-expression shows undef vars. Before this fix -data-evaluate-expression perceives undefined variables as strings:
```
(gdb)
-data-evaluate-expression undef
^done,value="undef"
```
* Minor fix: -data-evaluate-expression uses IsUnknownValue()
* Enable MiEvaluateTestCase test
All test pass on OS X.
Reviewers: abidh, clayborg
Subscribers: lldb-commits, clayborg, abidh
Differential Revision: http://reviews.llvm.org/D7463
llvm-svn: 228414
Why? Debugger::FormatPrompt() would run through the format prompt every time and parse it and emit it piece by piece. It also did formatting differently depending on which key/value pair it was parsing.
The new code improves on this with the following features:
1 - Allow format strings to be parsed into a FormatEntity::Entry which can contain multiple child FormatEntity::Entry objects. This FormatEntity::Entry is a parsed version of what was previously always done in Debugger::FormatPrompt() so it is more efficient to emit formatted strings using the new parsed FormatEntity::Entry.
2 - Allows errors in format strings to be shown immediately when setting the settings (frame-format, thread-format, disassembly-format
3 - Allows auto completion by implementing a new OptionValueFormatEntity and switching frame-format, thread-format, and disassembly-format settings over to using it.
4 - The FormatEntity::Entry for each of the frame-format, thread-format, disassembly-format settings only replaces the old one if the format parses correctly
5 - Combines all consecutive string values together for efficient output. This means all "${ansi.*}" keys and all desensitized characters like "\n" "\t" "\0721" "\x23" will get combined with their previous strings
6 - ${*.script:} (like "${var.script:mymodule.my_var_function}") have all been switched over to use ${script.*:} "${script.var:mymodule.my_var_function}") to make the format easier to parse as I don't believe anyone was using these format string power user features.
7 - All key values pairs are defined in simple C arrays of entries so it is much easier to add new entries.
These changes pave the way for subsequent modifications where we can modify formats to do more (like control the width of value strings can do more and add more functionality more easily like string formatting to control the width, printf formats and more).
llvm-svn: 228207
This is necessary because the byte size of an ObjC class type is not reliably statically knowable (e.g. because superclasses sit deep in frameworks that we have no debug info for)
The lack of reliable size info is a problem when trying to freeze-dry an ObjC instance (not the pointer, the pointee)
This commit lays the foundation for having language runtimes help in figuring out byte sizes, and having ClangASTType ask for runtime help
No feature change as no runtime actually implements the logic, and nowhere is an ExecutionContext passed in yet
llvm-svn: 227274
names can then be used in place of breakpoint id's or breakpoint id
ranges in all the commands that operate on breakpoints.
<rdar://problem/10103959>
llvm-svn: 224392
Such a persisted version is equivalent to evaluating the value via the expression evaluator, and holding on to the $n result of the expression, except this API can be used on SBValues that do not obviously come from an expression (e.g. are the result of a memory lookup)
Expose this via SBValue::Persist() in our public API layer, and ValueObject::Persist() in the lldb_private layer
Includes testcase
Fixes rdar://19136664
llvm-svn: 223711
support to LLDB. It includes the following:
- Changed DeclVendor to TypeVendor.
- Made the ObjCLanguageRuntime provide a DeclVendor
rather than a TypeVendor.
- Changed the consumers of TypeVendors to use
DeclVendors instead.
- Provided a few convenience functions on
ClangASTContext to make that easier.
llvm-svn: 223433
Previously using HostThread::GetNativeThread() required an ugly
cast to most-derived type. This solves the issue by simply returning
the derived type directly.
llvm-svn: 222185
Fixed include:
- Change Platform::ResolveExecutable(...) to take a ModuleSpec instead of a FileSpec + ArchSpec to help resolve executables correctly when we have just a path + UUID (no arch).
- Add the ability to set the listener in SBLaunchInfo and SBAttachInfo in case you don't want to use the debugger as the default listener.
- Modified all places that use the SBLaunchInfo/SBAttachInfo and the internal ProcessLaunchInfo/ProcessAttachInfo to not take a listener as a parameter since it is in the launch/attach info now
- Load a module's sections by default when removing a module from a target. Since we create JIT modules for expressions and helper functions, we could end up with stale data in the section load list if a module was removed from the target as the section load list would still have entries for the unloaded module. Target now has the following functions to help unload all sections a single or multiple modules:
size_t
Target::UnloadModuleSections (const ModuleList &module_list);
size_t
Target::UnloadModuleSections (const lldb::ModuleSP &module_sp);
llvm-svn: 222167
The issues were:
- If you called this function with any arch other than the default target architecture, creating the target would fail because the Target::GetDefaultArchitecture() would not match the single architecture in the file specified. This caused running the test suite remotely with lldb-platform to fail many many tests due to the bad target.
- It would specify the currently selected platform which might not work for the specified platform
All other SBDebugger::CreateTarget calls do not assume an architecture or platform and if they aren't specified, they don't auto select the wrong one for you.
With this fix, SBTarget SBDebugger::CreateTarget (const char *filename) now behaves like the other SBDebugger::CreateTarget() variants.
llvm-svn: 221908
Two flags are introduced:
- preferred display language (as in, ObjC vs. C++)
- summary capping (as in, should a limit be put to the amount of data retrieved)
The meaning - if any - of these options is for individual formatters to establish
The topic of a subsequent commit will be to actually wire these through to individual data formatters
llvm-svn: 221482
The problem was that SBTarget::ReadMemory() was making a new section offset lldb_private::Address by doing:
size_t
SBTarget::ReadMemory (const SBAddress addr,
void *buf,
size_t size,
lldb::SBError &error)
{
...
lldb_private::Address addr_priv(addr.GetFileAddress(), NULL);
bytes_read = target_sp->ReadMemory(addr_priv, false, buf, size, err_priv);
This is wrong. If you get the file addresss from the "addr" argument and try to read memory using that, it will think the file address is a load address and it will try to resolve it accordingly. This will work fine if your executable is loaded at the same address (no slide), but it won't work if there is a slide.
The fix is to just pass along the "addr.ref()" instead of making a new addr_priv as this will pass along the lldb_private::Address that is inside the SBAddress (which is what we want), and not always change it into something that becomes a load address (if we are running), or abmigious file address (think address zero when you have 150 shared libraries that have sections that start at zero, which one would you pick). The main reason for passing a section offset address to SBTarget::ReadMemory() is so you _can_ read from the actual section + offset that is specified in the SBAddress.
llvm-svn: 221213
If it has an Address object, it is assumed to be Valid.
Change SBAddress to always have an Address object and check
whether it is valid or not in those case.
This is fixing a subtle problem where we ended up with
a SBAddress with an Address of LLDB_INVALID_ADDRESS could
run through a copy constructor and turn into an SBAddress
with no Address object being backed (because it wasn't
distinguishing between invalid-Address versus no-Address.)
The cost of an Address object is not high and this will be
an easy mistake for someone else to make; I'm fixing
SBAddress so it doesn't come up again.
<rdar://problem/18069407>
llvm-svn: 221002
This works similarly to the {thread/frame/process/target.script:...} feature - you write a summary string, part of which is
${var.script:someFuncName}
someFuncName is expected to be declared as
def someFuncName(SBValue,otherArgument) - essentially the same as a summary function
Since . -> [] are the only allowed separators, and % is used for custom formatting, .script: would not be a legitimate symbol anyway, which makes this non-ambiguous
llvm-svn: 220821
New functions to give client applications to tools to discover target byte sizes
for addresses prior to ReadMemory. Also added GetPlatform and ReadMemory to the
SBTarget class, since they seemed to be useful utilities to have.
Each new API has had a test case added.
http://reviews.llvm.org/D5867
llvm-svn: 220372
There were many issues with synchronous mode that we discovered when started to try and add a "batch" mode. There was a race condition where the event handling thread might consume events when in sync mode and other times the Process::WaitForProcessToStop() would consume them. This also led to places where the Process IO handler might or might not get popped when it needed to be.
llvm-svn: 220254
after all the commands have been executed except if one of the commands was an execution control
command that stopped because of a signal or exception.
Also adds a variant of SBCommandInterpreter::HandleCommand that takes an SBExecutionContext. That
way you can run an lldb command targeted at a particular target, thread or process w/o having to
select same before running the command.
Also exposes CommandInterpreter::HandleCommandsFromFile to the SBCommandInterpreter API, since that
seemed generally useful.
llvm-svn: 219654
Reviewed at http://reviews.llvm.org/D5738
This adds an SB API into SBProcess:
bool SBProcess::IsInstrumentationRuntimePresent(InstrumentationRuntimeType type);
which simply tells whether a particular InstrumentationRuntime (read "ASan") plugin is present and active.
llvm-svn: 219560
do that (RunCommandInterpreter, HandleCommands, HandleCommandsFromFile) to gather
the options into an options class. Also expose that to the SB API's.
Change the way the "-o" options to the lldb driver are processed so:
1) They are run synchronously - didn't really make any sense to run the asynchronously.
2) The stop on error
3) "quit" in one of the -o commands will not quit lldb - not the command interpreter
that was running the -o commands.
I added an entry to the run options to stop-on-crash, but I haven't implemented that yet.
llvm-svn: 219553
Reviewed at http://reviews.llvm.org/D5592
This patch gives LLDB some ability to interact with AddressSanitizer runtime library, on top of what we already have (historical memory stack traces provided by ASan). Namely, that's the ability to stop on an error caught by ASan, and access the report information that are associated with it. The report information is also exposed into SB API.
More precisely this patch...
adds a new plugin type, InstrumentationRuntime, which should serve as a generic superclass for other instrumentation runtime libraries, these plugins get notified when modules are loaded, so they get a chance to "activate" when a specific dynamic library is loaded
an instance of this plugin type, AddressSanitizerRuntime, which activates itself when it sees the ASan dynamic library or founds ASan statically linked in the executable
adds a collection of these plugins into the Process class
AddressSanitizerRuntime sets an internal breakpoint on __asan::AsanDie(), and when this breakpoint gets hit, it retrieves the report information from ASan
this breakpoint is then exposed as a new StopReason, eStopReasonInstrumentation, with a new StopInfo subclass, InstrumentationRuntimeStopInfo
the StopInfo superclass is extended with a m_extended_info field (it's a StructuredData::ObjectSP), that can hold arbitrary JSON-like data, which is the way the new plugin provides the report data
the "thread info" command now accepts a "-s" flag that prints out the JSON data of a stop reason (same way the "-j" flag works now)
SBThread has a new API, GetStopReasonExtendedInfoAsJSON, which dumps the JSON string into a SBStream
adds a test case for all of this
I plan to also get rid of the original ASan plugin (memory history stack traces) and use an instance of AddressSanitizerRuntime for that purpose.
Kuba
llvm-svn: 219546
output style can be customized. Change the built-in default to be
more similar to gdb's disassembly formatting.
The disassembly-format for a gdb-like output is
${addr-file-or-load} <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>:
The disassembly-format for the lldb style output is
{${function.initial-function}{${module.file.basename}`}{${function.name-without-args}}:\n}{${function.changed}\n{${module.file.basename}`}{${function.name-without-args}}:\n}{${current-pc-arrow} }{${addr-file-or-load}}:
The two backticks in the lldb style formatter triggers the sub-expression evaluation in
CommandInterpreter::PreprocessCommand() so you can't use that one as-is ... changing to
use ' characters instead of ` would work around that.
<rdar://problem/9885398>
llvm-svn: 219544
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
This is the first step in getting ConnectionFileDescriptor ported
to Windows. It implements a connection against a disk file for
windows. This supports connection strings of the form file://PATH
which are currently supported only on posix platforms in
ConnectionFileDescriptor.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5608
llvm-svn: 219145
As part of getting ConnectionFileDescriptor working on Windows,
there is going to be alot of platform specific work to be done.
As a result, the implementation is moving into Host. This patch
performs the code move and fixes up call-sites appropriately.
Reviewed by: Greg Clayton
Differential Revision: http://reviews.llvm.org/D5548
llvm-svn: 219143
CMake build of any part of LLVM with LLDB checked out fails immediately.
=[
We appear to not even have a build bot covering the CMake build of LLDB
which makes this truly terrible. That needs to be fixed immediately.
llvm-svn: 218831
the user level. It adds the ability to invent new stepping modes implemented by python classes,
and to view the current thread plan stack and to some extent alter it.
I haven't gotten to documentation or tests yet. But this should not cause any behavior changes
if you don't use it, so its safe to check it in now and work on it incrementally.
llvm-svn: 218642
Changes include:
- fix it so you can select the "host" platform using "platform select host"
- change all callbacks that create platforms to returns shared pointers
- fix TestImageListMultiArchitecture.py to restore the "host" platform by running "platform select host"
- Add a new "PlatformSP Platform::Find(const ConstString &name)" method to get a cached platform
- cache platforms that are created and re-use them instead of always creating a new one
llvm-svn: 218145
For the Objective-C case, we do not have a "function type" notion, so we actually end up wrapping the clang ObjCMethodDecl in the Impl object, and ask function-y questions of it
In general, you can always ask for return type, number of arguments, and type of each argument using the TypeMemberFunction layer - but in the C++ case, you can also acquire a Type object for the function itself, which instead you can't do in the Objective-C case
llvm-svn: 218132
This patch moves creates a thread abstraction that represents a
thread running inside the LLDB process. This is a replacement for
otherwise using lldb::thread_t, and provides a platform agnostic
interface to managing these threads.
Differential Revision: http://reviews.llvm.org/D5198
Reviewed by: Jim Ingham
llvm-svn: 217460
LLDB had implemented its own DynamicLibrary class for plugin
support. LLVM has an equivalent mechanism, so this patch deletes
the duplicated code in LLDB and updates LLDB to reference the
mechanism provided by LLVM.
llvm-svn: 216606
This should bring HostInfo up to 99% completion. The remainder
of code in Host will be split into instantiatable classes
representing host processes, threads, dynamic libraries, and
process launching strategies.
llvm-svn: 216230
This continues the effort to get Host code moved over to HostInfo,
and removes many more instances of preprocessor defines along the
way.
llvm-svn: 216195
from Python. If you don't need to refer to the result in another expression, there's no
need to bloat the persistent variable table with them since you already have the result
SBValue to work with.
<rdar://problem/17963645>
llvm-svn: 215244
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
This fixes a diagnostic emitted by GCC.
llvm-svn: 213696
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
This fixes a warning emitted by GCC.
Differential Revision: http://reviews.llvm.org/D4624
llvm-svn: 213692
Any commands that want interactivity (stdin) will need to be executed through the normal command interpreter using the debugger's in/out/err file handles, or by using "command source".
Individual commands through the API will have their STDIN disabled. The STDOUT and STDERR will be redirected into the SBCommandReturnObject argument to SBCommandInterpreter::HandleCommand() as usual.
This helps with a deadlock situation in an IDE (Xcode) where the IDE was managing the breakpoint actions by setting a breakpoint callback and doing things manually.
<rdar://problem/17386271>
llvm-svn: 213023
See http://reviews.llvm.org/D4221 for details.
This commit allows you to control the signals that lldb will suppress, stop or forward using the Python and C++ APIs.
Change by Russell Harmon.
Xcode build system changes (and any mistakes) by Todd Fiala. Tested on MacOSX 10.9.3 and Xcode 6 beta. (Xcode 5 is hitting the dependency checker crasher on all my systems).
llvm-svn: 211526
Address the 'variable set but not used' warning from GCC. In some cases a few
additional calls were removed where there should be no visible side effects of
the calls (i.e. should not effect any cached state).
llvm-svn: 210879
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
the SystemRuntime to check if a thread will have any problems
performing an inferior function call so the driver can skip
making that function call on that thread. Often the function
call can be executed on another thread instead.
<rdar://problem/16777874>
llvm-svn: 208732
Add a callback that will allow an expression to be cancelled between the
expression evaluation stages (for the ClangUserExpressions.)
<rdar://problem/16790467>, <rdar://problem/16573440>
llvm-svn: 207944
currently associated with a given thread, on relevant targets.
Change the queue detection code to verify that the queues
associated with all live threads are included in the list.
<rdar://problem/16411314>
llvm-svn: 207160
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
You can either provide the function name, or function body text.
Also propagate the compilation error up from where it is checked so we can report compilation errors.
<rdar://problem/9898371>
llvm-svn: 205380
These changes were written by Greg Clayton, Jim Ingham, Jason Molenda.
It builds cleanly against TOT llvm with xcodebuild. I updated the
cmake files by visual inspection but did not try a build. I haven't
built these sources on any non-Mac platforms - I don't think this
patch adds any code that requires darwin, but please let me know if
I missed something.
In debugserver, MachProcess.cpp and MachTask.cpp were renamed to
MachProcess.mm and MachTask.mm as they picked up some new Objective-C
code needed to launch processes when running on iOS.
llvm-svn: 205113
for customizing "step-in" behavior (e.g. step-in doesn't step into code with no debug info), but also
the behavior of step-in/step-out and step-over when they step out of the frame they started in.
I also added as a proof of concept of this reworking a mode for stepping where stepping out of a frame
into a frame with no debug information will continue stepping out till it arrives at a frame that does
have debug information. This is useful when you are debugging callback based code where the callbacks
are separated from the code that initiated them by some library glue you don't care about, among other
things.
llvm-svn: 203747
items; the backing Queue object has the number of pending items
already cached. Also, add SBQueue::GetNumRunningItems() to provide
that information.
<rdar://problem/16272016>
llvm-svn: 203420
hold a strong pointer to that extended backtrace thread in the Process
just like we do for asking a thread's extended backtrace.
Also, give extended backtrace threads an invalid ThreadIndexID number.
We'll still give them valid thread_id's. Clients who want to know the
original thread's IndexID can call GetExtendedBacktraceOriginatingIndexID().
<rdar://problem/16126034>
llvm-svn: 203088
read during materialization. First of all, report
if we can't read the data for some reason. Second,
consult the ValueObject's error and report that if
there's some problem.
<rdar://problem/16074201>
llvm-svn: 202552
Also remove SetStopOthers from the ThreadPlanCallFunction, because if the value you have doesn't match what is
in the EvaluateExpressionOptions the plan was passed when created it won't work correctly.
llvm-svn: 202464
Fix a bug where calling SBFrame::FindValue() would cause a copy of all variables in the block to be inserted in the frame's variable list, regardless of whether those same variables were there or not - which means one could end up with a frame with lots of duplicate copies of the same variables
llvm-svn: 201614
ObjectFile::SetLoadAddress (Target &target,
lldb::addr_t value,
bool value_is_offset);
Now "value" is a slide if "value_is_offset" is true, and "value" is an image base address otherwise. All previous usage of this API was using slides.
Updated the ObjectFileELF and ObjectFileMachO SetLoadAddress methods to do the right thing.
Also updated the ObjectFileMachO::SetLoadAddress() function to not load __LINKEDIT when it isn't needed and to only load sections that belong to the executable object file.
llvm-svn: 201003