This is done by finding the types that are forward declarations that come from a module, and loading that module's debug info in a separate lldb_private::Module, and copying the type over into the current module using a ClangASTImporter object. ClangASTImporter objects are already used to copy types from on clang::ASTContext to another for expressions so the type copying code has been around for a while.
A new FindTypes variant was added to SymbolVendor and SymbolFile:
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
size_t
SymbolVendor::FindTypes (const std::vector<CompilerContext> &context, bool append, TypeMap& types);
The CompilerContext is a way to represent the exact context of a type and pass it through an agnostic API boundary so that we can find that exact context elsewhere in another file. This was required here because we can have a module that has submodules, both of which have a "foo" type.
I am not able to add tests for this yet as we currently don't build our C/C++/ObjC binaries with the clang binary that we build. There are some driver issues where it can't find the header files for the C and C++ standard library which makes compiling these tests hard. We can't also guarantee that if we are building with clang that it supporst the exact format of -gmodule debugging that we are trying to test. We have had other versions of clang that had a different implementation of -gmodule debugging that we are no longer supporting, so we can't enable tests if we are building with clang without compiling something and looking at the structure of the DWARF that was generated to ensure that it is the format we can actually use.
llvm-svn: 254476
It used to be a unique pointer, and there could be a case where ClangASTSource
held onto a copy of the pointer but Target::Destroy destroyed the unique pointer
in the mean time.
I also ensured that there is a validity check on the target (which confirms that
a ClangASTImporter can be generated) before the target's shared pointer is
copied into ClangASTSource.
This race condition caused a crash if Target::Destroy was called and then later
the target objecct was deleted.
llvm-svn: 252665
Fixed a crash that would happen if you tried to get the name of a constructor or destructor by calling "getDeclName()" instead of calling getName() (which would assert and crash).
Added the ability to get function arguments names from SBFunction.
llvm-svn: 252622
In this way, when a language needs to tell itself things that are not bound to a type but to a value (imagine a base-class relation, this is not about the type, but about the ValueObject), it can do so in a clean and general fashion
The interpretation of the values of the flags is, of course, up to the language that owns the value (the value object's runtime language, that is)
llvm-svn: 252503
For language that support such a thing, this API allows to ask whether a type is anonymous (i.e. has been given no name)
Comes with test case
llvm-svn: 252390
I am not adding a test case for this since I don't know how portable the __fp16 type is between compilers and I don't want to break the test suite.
<rdar://problem/22375079>
llvm-svn: 252012
This involved changing the TypeSystem::CreateInstance to take a module or a target. This allows type systems to create an AST for modules (no expression support needed) or targets (expression support is needed) and return the correct class instance for both cases.
llvm-svn: 249747
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
And remove the switch default, so that the -Wcovered-switch-default
warning will catch new types next time they're added.
Differential Revision: http://reviews.llvm.org/D13096
llvm-svn: 248414
Different type system may have different notions of attributes of a type that do not matter for data formatters matching purposes
For instance, in the case of clang types, we remove some qualifiers (e.g. "volatile") as it doesn't make much sense to differentiate volatile T from T in the data formatters
This new API allows each type system to generate, if needed, a type that does not have those unwanted attributes that the data formatters can then consume to generate matches
llvm-svn: 248359
Summary:
This is no longer related to Clang and is just an opaque pointer
to data for a compiler type.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13039
llvm-svn: 248288
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
Summary: Supports the parsing of the "using namespace XXX" and "using XXX::XXX" directives. Added ambiguity errors when it two decls with the same name are encountered (see comments in TestCppNsImport). Fixes using directives being duplicated for anonymous namespaces. Fixes GetDeclForUID for specification DIEs.
Reviewers: sivachandra, chaoren, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12897
llvm-svn: 247836
Summary: SymbolFileDWARF now creates VarDecl and BlockDecl and adds them to the Decl tree. Then, in ClangExpressionDeclMap it uses the Decl tree to search for a variable. This fixes lots of variable scoping problems.
Reviewers: sivachandra, chaoren, spyffe, clayborg
Subscribers: tberghammer, jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D12658
llvm-svn: 247746
Before we had:
ClangFunction
ClangUtilityFunction
ClangUserExpression
and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression
base class, and three pure virtual implementations for the Expression kinds:
FunctionCaller
UtilityFunction
UserExpression
You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage.
The Target will then consult all the registered TypeSystem plugins, and if the type system that matches
the language can make an expression of that kind, it will do so and return it.
Because all of the real expression types need to communicate with their ExpressionParser in a uniform way,
I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper
that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types.
Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs.
The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller
to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a
FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions.
Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common
JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency
but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary.
llvm-svn: 247720
This will keep our code cleaner and it removes the need for intrusive additions to TypeSystem like:
class TypeSystem
{
virtual ClangASTContext *
AsClangASTContext() = 0;
}
As you can now just use the llvm::dyn_cast and other casts.
llvm-svn: 247041
class DWARFASTParser
{
public:
virtual ~DWARFASTParser() {}
virtual lldb::TypeSP
ParseTypeFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die,
lldb_private::Log *log,
bool *type_is_new_ptr) = 0;
virtual lldb_private::Function *
ParseFunctionFromDWARF (const lldb_private::SymbolContext& sc,
const DWARFDIE &die) = 0;
virtual bool
CompleteTypeFromDWARF (const DWARFDIE &die,
lldb_private::Type *type,
lldb_private::CompilerType &clang_type) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextForUIDFromDWARF (const DWARFDIE &die) = 0;
virtual lldb_private::CompilerDeclContext
GetDeclContextContainingUIDFromDWARF (const DWARFDIE &die) = 0;
};
We have one subclass named DWARFASTParserClang that implements all of the clang specific AST type parsing. This keeps all DWARF parsing in the DWARF plug-in. Moved all of the DWARF parsing code that was in ClangASTContext over into DWARFASTParserClang.
lldb_private::TypeSystem classes no longer have any DWARF parsing functions in them, but they can hand out a DWARFASTParser:
virtual DWARFASTParser *
GetDWARFParser ()
{
return nullptr;
}
This keeps things clean and makes for easy merging when we have different AST's for different languages.
llvm-svn: 246242
Added a new class called DWARFDIE that contains a DWARFCompileUnit and DWARFDebugInfoEntry so that these items always stay together.
There were many places where we just handed out DWARFDebugInfoEntry pointers and then use them with a compile unit that may or may not be the correct one. Clients outside of DWARFCompileUnit and DWARFDebugInfoEntry should all be dealing with DWARFDIE instances instead of playing with DWARFCompileUnit/DWARFDebugInfoEntry pairs manually.
This paves to the way for some modifications that are coming for DWO.
llvm-svn: 246100
These are 2 new value currently in experimental status used when split
debug info is enabled.
Differential revision: http://reviews.llvm.org/D12238
llvm-svn: 245931
The array is indexed by the value in the DW_FORM filed what can be
bigger then the size of the array. This CL add bound checking to avoid
buffer overflows
Differential revision: http://reviews.llvm.org/D12239
llvm-svn: 245930
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
Another step towards isolating all language/AST specific code into the files to further abstract specific implementations of parsing types for a given language.
llvm-svn: 245090
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
This is the work done by Ryan Brown from http://reviews.llvm.org/D8712 that makes a TypeSystem class and abstracts types to be able to use a type system.
All tests pass on MacOSX and passed on linux the last time this was submitted.
llvm-svn: 244679