Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables.
This should now be fixed.
llvm-svn: 238192
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first two times this was committed (r229831, r233055), it caused several buildbot failures.
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.
llvm-svn: 237234
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
This reverts commit r233055.
It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.
llvm-svn: 233068
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
The first time this was committed (r229831), it caused several buildbot failures.
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.
Differential Revision: http://reviews.llvm.org/D8542
llvm-svn: 233055
Previously, subtarget features were a bitfield with the underlying type being uint64_t.
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.
Differential Revision: http://reviews.llvm.org/D7065
llvm-svn: 229831
This removes a hardcoded list of instructions in the CodeEmitter. Eventually I intend to remove the predicates on the affected instructions since in any given mode two of them are valid if we supported addr32/addr16 prefixes in the assembler.
llvm-svn: 224809
Summary: x86 allows either ordering for the LOCK and DATA16 prefixes, but using GCC+GAS leads to different code generation than using LLVM. This change matches the order that GAS emits the x86 prefixes when a semicolon isn't used in inline assembly (see tc-i386.c comment before define LOCK_PREFIX), and helps simplify tooling that operates on the instruction's byte sequence (such as NaCl's validator). This change shouldn't have any performance impact.
Test Plan: ninja check
Reviewers: craig.topper, jvoung
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D6630
llvm-svn: 224283
This allows assembling the two new instructions, encls and enclu for the
SKX processor model.
Note the diffs are a bigger than what might think, but to fit the new
MRM_CF and MRM_D7 in things in the right places things had to be
renumbered and shuffled down causing a bit more diffs.
rdar://16228228
llvm-svn: 214460
Passes the computed scaling factor in TSFlags rather than the old attributes.
Also removes the C++ version of computing the scaling factor (MemObjSize)
along with the asserts added by the previous patch.
No functional change.
llvm-svn: 213279
This does not actually move the logic yet but reimplements it in the Tablegen
language. Then asserts that the new implementation results in the same value.
The next patch will remove the assert and the temporary use of the TSFlags and
remove the C++ implementation.
The formula requires a limited form of the logical left and right operators.
I implemented these with the bit-extract/insert operator (i.e. blah{bits}).
No functional change.
llvm-svn: 213278
No functional change. As I was trying to understand this function, I found
that variables were reused with confusing names and the broadcast case was a
bit too implicit. Hopefully, this is an improvement.
llvm-svn: 212795
It was computing the VL/n case as:
MemObjSize = VectorByteSize / ElemByteSize / Divider * ElemByteSize
ElemByteSize not only falls out but VectorByteSize/Divider now actually
matches the definition of VL/n.
Also some formatting fixes.
llvm-svn: 212794
1) Changed gather and scatter intrinsics. Now they are aligned with GCC built-ins. There is no more non-masked form. Masked intrinsic receives -1 if all lanes are executed.
2) I changed the function that works with intrinsics inside X86ISelLowering.cpp. I put all intrinsics in one table. I did it for INTRINSICS_W_CHAIN and plan to put all intrinsics from WO_CHAIN set to the same table in order to avoid the long-long "switch". (I wanted to use static map initialization that allowed by C++11 but I wasn't able to compile it on VS2012).
3) I added gather/scatter prefetch intrinsics.
4) I fixed MRMm encoding for masked instructions.
llvm-svn: 208522
With this MC is able to handle _GLOBAL_OFFSET_TABLE_ in 64 bit mode, which is
needed for medium and large code models.
This fixes pr19470.
llvm-svn: 206793
Original commits messages:
Add MRMXr/MRMXm form to X86 for use by instructions which treat the 'reg' field of modrm byte as a don't care value. Will allow for simplification of disassembler code.
Simplify a bunch of code by removing the need for the x86 disassembler table builder to know about extended opcodes. The modrm forms are sufficient to convey the information.
llvm-svn: 201065
r201059 appears to cause a crash in a bootstrapped build of clang. Craig
isn't available to look at it right now, so I'm reverting it while he
investigates.
llvm-svn: 201064
These should end up (in ELF) as R_X86_64_32S relocs, not R_X86_64_32.
Kill the horrid and incomplete special case and FIXME in
EncodeInstruction() and set things up so it can infer the signedness
from the ImmType just like it can the size and whether it's PC-relative.
llvm-svn: 200495
The subtarget info is explicitly passed to the EncodeInstruction
method and we should use that subtarget info to influence any
encoding decisions.
llvm-svn: 200350