Cost calculation for vector GEP failed with due to invalid cast to GEP index operand.
The bug is fixed, added a test.
http://reviews.llvm.org/D14976
llvm-svn: 254408
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
Previously it is not allowed for each MBB to have successors with both known and
unknown probabilities. However, this may be too strict as at this stage we could
not always guarantee that. It is better to remove this restriction now, and I
will work on validating MBB's successors' probabilities first (for example,
check if the sum is approximate one).
llvm-svn: 254402
The Statistical Profiling Extension is an optional extension to
ARMv8.2-A. Since it is an optional extension, I have added the
FeatureSPE subtarget feature to control it. The assembler-visible parts
of this extension are the new "psb csync" instruction, which is
equivalent to "hint #17", and a number of system registers.
Differential Revision: http://reviews.llvm.org/D15021
llvm-svn: 254401
Add ARMv8.2-A to TargetParser, so that it can be used by the clang
command-line options and the .arch directive.
Most testing of this will be done in clang, checking that the
command-line options that this enables work.
Differential Revision: http://reviews.llvm.org/D15037
llvm-svn: 254400
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature.
There is also one large, optional feature, which adds 16-bit floating
point versions of all existing floating-point instructions (VFP and
SIMD), this is represented by the FeatureFullFP16 subtarget feature.
Differential Revision: http://reviews.llvm.org/D15036
llvm-svn: 254399
Not sure how to test this. I noticed by inspection in the isel tables where the same pattern tried to produce DIV and DIVR or SUB and SUBR.
llvm-svn: 254388
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
SDAG currently can emit debug location for function parameters when
an llvm.dbg.declare points to either a function argument SSA temp,
or to an AllocaInst. This change extends this logic by adding a
fallback case when neither of the above is true.
This is required for SafeStack, which may copy the contents of a
byval function argument into something that is not an alloca, and
then describe the target as the new location of the said argument.
llvm-svn: 254352
The current code does not take alloca array size into account and,
as a result, considers any access past the first array element to be
unsafe.
llvm-svn: 254350
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
We currently output FMA instructions on targets which support both FMA4 + FMA (i.e. later Bulldozer CPUS bdver2/bdver3/bdver4).
This patch flips this so FMA4 is preferred; this is for several reasons:
1 - FMA4 is non-destructive reducing the need for mov instructions.
2 - Its more straighforward to commute and fold inputs (although the recent work on FMA has reduced this difference).
3 - All supported targets have FMA4 performance equal or better to FMA - Piledriver (bdver2) in particular has half the throughput when executing FMA instructions.
Its looks like no future AMD processor lines will support FMA4 after the Bulldozer series so we're not causing problems for later CPUs.
Differential Revision: http://reviews.llvm.org/D14997
llvm-svn: 254339
A traditional linker is roughly split in symbol resolution and "copying
stuff".
The two tasks are badly mixed in lib/Linker.
This starts splitting them apart.
With this patch there are no direct call to linkGlobalValueBody or
linkGlobalValueProto. Everything is linked via WapValue.
This also includes a few fixes:
* A GV goes undefined if the comdat is dropped (comdat11.ll).
* We error if an internal GV goes undefined (comdat13.ll).
* We don't link an unused comdat.
The first two match the behavior of an ELF linker. The second one is
equivalent to running globaldce on the input.
llvm-svn: 254336
If we know we have stack objects, we reserve the registers
that the private buffer resource and wave offset are passed
and use them directly.
If not, reserve the last 5 SGPRs just in case we need to spill.
After register allocation, try to pick the next available registers
instead of the last SGPRs, and then insert copies from the inputs
to the reserved registers in the progloue.
This also only selectively enables all of the input registers
which are really required instead of always enabling them.
llvm-svn: 254331
It does not work because of emergency stack slots.
This pass was supposed to eliminate dummy registers for the
spill instructions, but the register scavenger can introduce
more during PrologEpilogInserter, so some would end up
left behind if they were needed.
The potential for spilling the scratch resource descriptor
and offset register makes doing something like this
overly complicated. Reserve registers to use for the resource
descriptor and use them directly in eliminateFrameIndex.
Also removes creating another scratch resource descriptor
when directly selecting scratch MUBUF instructions.
The choice of which registers are reserved is temporary.
For now it attempts to pick the next available registers
after the user and system SGPRs.
llvm-svn: 254329
The MachineVerifier wants to check that the register operands of an
instruction belong to the instruction's register class. RIP-relative
control flow instructions violated this by referencing RIP. While this
was fixed for SysV, it was never fixed for Win64.
llvm-svn: 254315
Re-enable shrink wrapping for PPC64 Little Endian.
One minor modification to PPCFrameLowering::findScratchRegister was necessary to handle fall-thru blocks (blocks with no terminator) correctly.
Tested with all LLVM test, clang tests, and the self-hosting build, with no problems found.
PHabricator: http://reviews.llvm.org/D14778
llvm-svn: 254314
Value of offset operand for microMIPS BALC and BC instructions is currently shifted 2 bits, but it should be 1 bit.
Differential Revision: http://reviews.llvm.org/D14770
llvm-svn: 254296
This one is enabled only under -ffast-math. There are cases where the
difference between the value computed and the correct value is huge
even for ffast-math, e.g. as Steven pointed out:
x = -1, y = -4
log(pow(-1), 4) = 0
4*log(-1) = NaN
I checked what GCC does and apparently they do the same optimization
(which result in the dramatic difference). Future work might try to
make this (slightly) less worse.
Differential Revision: http://reviews.llvm.org/D14400
llvm-svn: 254263
This fixes buildbots in systems that std::to_string is not present. It
also tidies the output of the diagnostic to render doubles a bit better
(thanks Ben Kramer for help with string streams and format).
llvm-svn: 254261
We could already recognise shuffle(FSUB, FADD) -> ADDSUB, this allow us to recognise shuffle(FADD, FSUB) -> ADDSUB by commuting the shuffle mask prior to matching.
llvm-svn: 254259
This is the last step to enable profile runtime to share the same value prof
data format and reader/writer code with llvm host tools. The VP related
data structures are moved to a section in InstrProfData.inc enabled with macro
INSTR_PROF_VALUE_PROF_DATA, and common API implementations are enabled with
INSTR_PROF_COMMON_API_IMPL. There should be no functional change.
llvm-svn: 254235
This patch implements dynamic realignment of stack objects for targets
with a non-realigned stack pointer. Behaviour in FunctionLoweringInfo
is changed so that for a target that has StackRealignable set to
false, over-aligned static allocas are considered to be variable-sized
objects and are handled with DYNAMIC_STACKALLOC nodes.
It would be good to group aligned allocas into a single big alloca as
an optimization, but this is yet todo.
SystemZ benefits from this, due to its stack frame layout.
New tests SystemZ/alloca-03.ll for aligned allocas, and
SystemZ/alloca-04.ll for "no-realign-stack" attribute on functions.
Review and help from Ulrich Weigand and Hal Finkel.
llvm-svn: 254227
Raw profile writer needs to write all data of one kind in one continuous block,
so the buffer needs to be pre-allocated and passed to the writer method in
pieces for function profile data. The change adds the support for raw value data
writing.
llvm-svn: 254219
This adds two thresholds to the sample profiler to affect inlining
decisions: the concept of global hotness and coldness.
Functions that have accumulated more than a certain fraction of samples at
runtime, are annotated with the InlineHint attribute. Conversely,
functions that accumulate less than a certain fraction of samples, are
annotated with the Cold attribute.
This is very similar to the hints emitted by Clang when using
instrumentation profiles.
Notice that this is a very blunt instrument. A function may have
globally collected a significant fraction of samples, but that does not
necessarily mean that every callsite for that function is hot.
Ideally, we would annotate each callsite with the samples collected at
that callsite. This way, the inliner can incorporate all these weights
into its cost model.
Once the inliner offers this functionality, we can change the hints
emitted here to a more precise per-callsite annotation. For now, this is
providing some measure of speedups with our internal benchmarks. I've
observed speedups of up to 23% (though the geo mean is about 3%). I expect
these numbers to improve as the inliner gets better annotations.
llvm-svn: 254212
Based on testing of internal benchmarks, I'm lowering this threshold to
a value of 0.1%. This means that SamplePGO will respect 99.9% of the
original inline decisions when following a profile.
The performance difference is noticeable in some tests. With the
previous threshold, the speedups over baseline -O2 was about 0.63%. With
the new default, the speedups are around 3% on average.
The point of this threshold is not to do more aggressive inlining. When
an inlined callsite crosses this threshold, SamplePGO will redo the
inline decision so that it can better apply the input profile.
By respecting most original inline decisions, we can apply more of the
input profile because the shape of the code follows the profile more
closely.
In the next series, I'll be looking at adding some inline hints for the
cold callsites and for toplevel functions that are hot/cold as well.
llvm-svn: 254211
Now the ValueMapper has two callbacks. The first one maps the
declaration. The ValueMapper records the mapping and then materializes
the body/initializer.
llvm-svn: 254209
Summary:
Since this build attribute corresponds to a whole module, and
different functions in a module may differ in the optimizations
enabled for them, this attribute is emitted after all functions,
and only in the case that the optimization goals for all
functions match.
Reviewers: logan, hans
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D14934
llvm-svn: 254201
ARMv8.2-A adds 16-bit floating point versions of all existing VFP
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Most of these instructions are the same as the 32- and 64-bit versions,
but with the type field (bits 23-22) set to 0b11. Previously the top bit
of the size field was always 0, so the instruction classes only provided
a 1-bit size field, which I have widened to 2 bits.
Differential Revision: http://reviews.llvm.org/D15014
llvm-svn: 254198
This patch changes the DFSan instrumentation for aarch64 to instead
of using fixes application mask defined by SANITIZER_AARCH64_VMA
to read the application shadow mask value from compiler-rt. The value
is initialized based on runtime VAM detection.
Along with this patch a compiler-rt one will also be added to export
the shadow mask variable.
llvm-svn: 254196
The COFF object writer was previously adding unnecessary symbols to its
temporary data structures and cleaning them up later. This made the code
harder to understand and caused a bug (aliases classed as temporary symbols
would cause an assertion failure). A much simpler way of handling such
symbols is to ask the layout for their section-relative position when needed.
Tested with a bootstrap on Windows and by building Chrome.
Differential Revision: http://reviews.llvm.org/D14975
llvm-svn: 254183
The order in which instructions are truncated in truncateToMinimalBitwidths
effects code generation. Switch to a map with a determinisic order, since the
iteration order over a DenseMap is not defined.
This code is not hot, so the difference in container performance isn't
interesting.
Many thanks to David Blaikie for making me aware of MapVector!
Fixes PR25490.
Differential Revision: http://reviews.llvm.org/D14981
llvm-svn: 254179
They are as much trouble as aliases to declarations. They are requiring
the code generator to define a symbol with the same value as another
symbol, but the second symbol is undefined.
If representing this is important for some optimization, we could add
support for available_externally aliases. They would be *required* to
point to a declaration (or available_externally definition).
llvm-svn: 254170
Summary:
The bugs were:
* append, prepend, and balign were not tested
* balign takes a uimm2 not a uimm5.
* drotr32 was correctly implemented with a uimm5 but the tests expected
'52' to be valid.
* li/la were implemented with a uimm5 instead of simm32. simm32 isn't
completely correct either but I'll fix that when I get to simm32.
A notable omission are some of the shift instructions. Several of these
have been implemented using a single uimm6 instruction (rather than two
uimm5 instructions and a CodeGen-only uimm6 pseudo). These will be updated
in the uimm6 patch.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14712
llvm-svn: 254164
ARMv8.2-A adds new variants of the "at" (address translate) system
instruction, which take the PSTATE.PAN bit (added in ARMv8.1-A). These
are a required part of ARMv8.2-A, so no additional subtarget features
are required.
Differential Revision: http://reviews.llvm.org/D15018
llvm-svn: 254159
Building on r253865 the crash is not limited to signed overflows.
Disable custom handling of unsigned 32-bit and 64-bit integer divide.
Add test cases for both 32-bit and 64-bit unsigned integer overflow.
llvm-svn: 254158
ARMv8.2-A adds a new PSTATE bit, PSTATE.UAO, which allows the LDTR/STTR
instructions to behave the same as LDR/STR with respect to execute-only
pages at higher privilege levels. New variants of the MSR/MRS
instructions are added to allow reading and writing this bit. It is a
required part of ARMv8.2-A, so no additional subtarget features are
required.
Differential Revision: http://reviews.llvm.org/D15020
llvm-svn: 254157
ARMv8.2-A adds the "dc cvap" instruction, which is a system instruction
that cleans caches to the point of persistence (for systems that have
persistent memory). It is a required part of ARMv8.2-A, so no additional
subtarget features are required.
Differential Revision: http://reviews.llvm.org/D15016
llvm-svn: 254156
ARMv8.2-A adds a new ID register, ID_A64MMFR2_EL1, which behaves in the
same way as ID_A64MMFR0_EL1 and ID_A64MMFR1_EL1. It is a required part
of ARMv8.2-A, so no additional subtarget features are required.
Differential Revision: http://reviews.llvm.org/D15017
llvm-svn: 254155
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature. There
is also one large, optional feature, which adds 16-bit floating point
versions of all existing floating-point instructions (VFP and SIMD),
this is represented by the FeatureFullFP16 subtarget feature.
Differential Revision: http://reviews.llvm.org/D15013
llvm-svn: 254154
generated for _mm_losd_s{s,d}() intrinsics and used in scalar FMAs generated
for FMA intrinsics _mm_f{madd,msub,nmadd,nmsub}_s{s,d}().
Reviewer: David Kreitzer
Differential Revision: http://reviews.llvm.org/D14762
llvm-svn: 254140
Summary:
This returns a pointer to the dispatch packet, which can be used to load
information about the kernel dispach.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D14898
llvm-svn: 254116
This is one of the many steps to commonize value profiling support between profile
runtime and compiler/llvm tools.
After this change, profiler runtime now can share the same C APIs to do VP
serialization/deseriazation with LLVM host tools (and produces value data
in identical format between indexed and raw profile).
It is not yet enabled in profiler runtime yet.
Also added a unit test case to test runtime profile data serialization/deserialization
interfaces implemented using common closure code.
llvm-svn: 254110
This is a temporary fix to address ICE on 2005-10-21-longlonggtu.ll.
The proper fix will be to use A2_tfrsi, but it will need more work to
teach all users of A2_tfrsi to also expect a floating-point operand.
llvm-svn: 254099
v2: added more tests, moved the SALU->VALU conversion to a separate function
It looks like it's not possible to get subregisters in the S_ABS lowering
code, and I don't feel like guessing without testing what the correct code
would look like.
llvm-svn: 254095
If virtual registers are created late, mappings to WebAssembly
registers need to be added explicitly. This patch adds a function
to do so and teaches WebAssemblyPeephole to use it. This fixes
an out-of-bounds access on the WARegs vector.
llvm-svn: 254094
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
llvm-svn: 254085
Instead of trying to move ARGUMENT instructions back up to the top after
they've been scheduled or sunk down, use a fake physical register to
create a liveness constraint that prevents ARGUMENT instructions from
moving down in the first place. This is still not entirely ideal, however
it is more robust than letting them move and moving them back.
llvm-svn: 254084
The e500mc does not actually support the mfocrf instruction; update the
processor definitions to reflect that fact.
Patch by Tom Rix (with some test-case cleanup by me).
llvm-svn: 254064
to a simple type when lowering a truncating store of a vector type. In this
case for an EVT we'll return Expand as we should in all of the cases anyhow.
The testcase triggered at the one in VectorLegalizer::LegalizeOp, inspection
found the rest.
llvm-svn: 254061
It was wrong order of operands (from intrinsic to DAG node).
I added more strict type specification for instruction selection.
Differential Revision: http://reviews.llvm.org/D14942
llvm-svn: 254059
1. Convert serialization methods using InstrProfRecord as source into C (impl)
interfaces using Closure.
2. Reimplement InstrProfRecord serialization method to use new C interface
as dummy wrapper.
Now it is ready to implement wrapper for runtime value profile data.
(The new code need better source location -- but not changed in this patch to
minimize diffs. )
llvm-svn: 254057
This caused PR25607 and also caused Chromium to crash on start-up.
(Also had to update test/CodeGen/X86/avx-splat.ll, which was committed
after shrink wrapping was enabled.)
llvm-svn: 254044
Add a simple initial heuristic to control importing based on the number
of instructions recorded in the function's summary. Add option to
control the limit, and test using option.
llvm-svn: 254036
When the original binary is executed and sampled, the resulting profile
contains information on the original inline stack. We currently follow
the original inline plan if we notice that the inlined callsite has more
than 0 samples to it.
A better way is to determine whether the callsite is actually worth
inlining. If the callsite accumulates a small fraction of the samples
spent in the parent function, then we don't want to bother inlining it
(as it means that the callsite is actually cold).
This patch introduces a threshold expressed in percentage of samples
in relation to the parent function. If the callsite uses less than N%
of the total samples used by its parent, the original inline decision is
not re-applied.
I've set the threshold to the very arbitrary value of 5%. I'm yet to do
any actual experiments to see what's a good value. I wanted to separate
the basic mechanism from the tuning.
llvm-svn: 254034
This patch implements a minimum spanning tree (MST) based instrumentation for
PGO. The use of MST guarantees minimum number of CFG edges getting
instrumented. An addition optimization is to instrument the less executed
edges to further reduce the instrumentation overhead. The patch contains both the
instrumentation and the use of the profile to set the branch weights.
Differential Revision: http://reviews.llvm.org/D12781
llvm-svn: 254021
r253918 had refactored expressions like "A - B.Address + C" to "A -
B.getAddressWithOffset(C)". This is incorrect, since the latter really
computes "A - B.Address - C".
None of the tests I can run locally on x86 broke due to this bug, but it
is the current suspect for breakage on the AArch64 buildbots.
llvm-svn: 254017
X86 needs to use its own FMA opcodes, preventing the standard FNEG(FMA) pattern table recognition method used by other platforms. This patch adds support for lowering FNEG(FMA(X,Y,Z)) into a single suitably negated FMA instruction.
Fix for PR24364
Differential Revision: http://reviews.llvm.org/D14906
llvm-svn: 254016
Analyze imported function bodies and add any new external calls to
the worklist for importing. Currently no controls on the importing
so this will end up importing everything possible in the call tree
below the importing module. Basic profitability checks coming next.
Update test to check for iteratively inlined functions.
llvm-svn: 254011
This patch fixes the following issues:
1. Fix the return type of X86psadbw: it should not be the same type of inputs.
For vNi8 inputs the output should be vMi64, where M = N/8.
2. Fix the return type of int_x86_avx512_psad_bw_512 accordingly.
3. Fix the definiton of PSADBW, VPSADBW, and VPSADBWY accordingly.
4. Adjust the return type when building a DAG node of X86ISD::PSADBW type.
5. Update related tests.
Differential revision: http://reviews.llvm.org/D14897
llvm-svn: 254010
The new function import pass exposed an issue when we import references
to local values on multiple importing passes. They are renamed on each
import pass, and we need to ensure that the already promoted and renamed
references existing in the dest module are correctly identified and
updated so that they aren't spuriously renamed again (due to a perceived
conflict with the newly linked reference).
llvm-svn: 254009
Summary:
Followed the guidelines in:
http://llvm.org/docs/CodingStandards.html#include-style
However, I noticed that uppercase named headers come before lowercase ones
throughout the codebase. So kept them as is.
Patch by Mandeep Singh Grang <mgrang@codeaurora.org>
Reviewers: majnemer, davide, jmolloy, atrick
Subscribers: sanjoy
Differential Revision: http://reviews.llvm.org/D14939
llvm-svn: 254005
Convert two C++ static member functions to be C APIs. This
is one of the many steps to get ready to share VP writer code
with profiler runtime.
llvm-svn: 253999
Skip imports for weak_any aliases as well. Fix the test to check
non-import of weak aliases and functions, and import of normal alias.
llvm-svn: 253991
We had duplicated definitions for the same hardware '[v]movq' instructions. For example with SSE:
def MOVZQI2PQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only
[(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))))],
IIC_SSE_MOVDQ>;
def MOV64toPQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst, (v2i64 (scalar_to_vector GR64:$src)))],
IIC_SSE_MOVDQ>, Sched<[WriteMove]>;
As shown in the test case and PR25554:
https://llvm.org/bugs/show_bug.cgi?id=25554
This causes us to miss reusing an operand because later passes don't know these 'movq' are the same instruction.
This patch deletes one pair of these defs.
Sadly, this won't fix the original test case in the bug report. Something else is still broken.
Differential Revision: http://reviews.llvm.org/D14941
llvm-svn: 253988
The one regression in the builtin tests is in the read2 test which now
(again) has many extra copies, but this should be solved once the pass
is replaced with a DAG combine.
llvm-svn: 253974
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
llvm-svn: 253965
Summary:
This is a helper to perform cross-module import for ThinLTO. Right now
it is importing naively every possible called functions.
Reviewers: tejohnson
Subscribers: dexonsmith, llvm-commits
Differential Revision: http://reviews.llvm.org/D14914
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 253954
This patch detects the AVG pattern in vectorized code, which is simply
c = (a + b + 1) / 2, where a, b, and c have the same type which are vectors of
either unsigned i8 or unsigned i16. In the IR, i8/i16 will be promoted to
i32 before any arithmetic operations. The following IR shows such an example:
%1 = zext <N x i8> %a to <N x i32>
%2 = zext <N x i8> %b to <N x i32>
%3 = add nuw nsw <N x i32> %1, <i32 1 x N>
%4 = add nuw nsw <N x i32> %3, %2
%5 = lshr <N x i32> %N, <i32 1 x N>
%6 = trunc <N x i32> %5 to <N x i8>
and with this patch it will be converted to a X86ISD::AVG instruction.
The pattern recognition is done when combining instructions just before type
legalization during instruction selection. We do it here because after type
legalization, it is much more difficult to do pattern recognition based
on many instructions that are doing type conversions. Therefore, for
target-specific instructions (like X86ISD::AVG), we need to take care of type
legalization by ourselves. However, as X86ISD::AVG behaves similarly to
ISD::ADD, I am wondering if there is a way to legalize operands and result
types of X86ISD::AVG together with ISD::ADD. It seems that the current design
doesn't support this idea.
Tests are added for SSE2, AVX2, and AVX512BW and both i8 and i16 types of
variant vector sizes.
Differential revision: http://reviews.llvm.org/D14761
llvm-svn: 253952
Caller saved regs differ between SysV and Win64. Use the tail call available set to scavenge from.
Refactor register info to create new helper to get at tail call GPRs. Added a new test case for windows. Fixed up a number of X64 tests since now RCX is preferred over RDX on SysV.
Differential Revision: http://reviews.llvm.org/D14878
llvm-svn: 253927
With the '=' suffix now indicating which operands are output operands, it's
no longer as important to distinguish between a call's inputs and its outputs
using operand ordering, so we can go back to printing them in the normal order.
llvm-svn: 253925
This distinguishes input operands from output operands. This is something of
a syntactic experiment to see whether the mild amount of clutter this adds is
outweighed by the extra information it conveys to the reader.
llvm-svn: 253922
Summary:
For relocation types that are known to not require stub functions, there
is no need to allocate extra space for the stub functions.
Reviewers: lhames, reames, maksfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14676
llvm-svn: 253920