This change merges adjacent zero stores into a wider single store.
For example :
strh wzr, [x0]
strh wzr, [x0, #2]
becomes
str wzr, [x0]
This will fix PR25410.
llvm-svn: 253711
incorrect, as the chosen representative of the weak symbol may not live
with the code in question. Always indirect the access through the TOC
instead.
Patch by Kyle Butt!
llvm-svn: 253708
Several (but not all) of the labels that are checked for in this test case
are checked as strings instead of labels. This can cause an apparent test
case failure if they are tested in an appropriately named directory.
For example, one of them that fails:
define zeroext i32 @test2(i32 %A.u, i32 %B.u) {
; A8: test2
; A8: uxtab r0, r0, r1
Output that causes it to fail:
. . .
.file "/home/seurer/llvm/llvm-test2/test/CodeGen/Thumb2/thumb2-uxt_rot.ll"
. . .
.globl test2
.align 1
.type test2,%function
.code 16 @ @test2
.thumb_func
test2:
.fnstart
The "A8: test2" matches on the directory name instead of the label.
llvm-svn: 253702
Summary:
This follows D14577 to treat ARMv6-J as an alias for ARMv6,
instead of an architecture in its own right.
The functional change is that the default CPU when targeting ARMv6-J
changes from arm1136j-s to arm1136jf-s, which is currently used as
the default CPU for ARMv6; both are, in fact, ARMv6-J CPUs.
The J-bit (Jazelle support) is irrelevant to LLVM, and it doesn't
affect code generation, attributes, optimizations, or anything else,
apart from selecting the default CPU.
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14755
llvm-svn: 253675
While debugging some sampling coverage problems, I found this useful:
When applying samples from a profile, it helps to also know what line
offset and discriminator the sample belongs to. This makes it easy to
correlate against the input profile.
llvm-svn: 253670
Terrifyingly, one of them is a mishandling of floating point vectors
in Constant::isZero(). How exactly this issue survived this long
is beyond me.
llvm-svn: 253655
The nuw constraint will not be satisfied unless <expr> == 0.
This bug has been around since r102234 (in 2010!), but was uncovered by
r251052, which introduced more aggressive optimization of nuw scev expressions.
Differential Revision: http://reviews.llvm.org/D14850
llvm-svn: 253627
This introduces two new options:
- "llvm-lto -save-merged-module -o outfile" dumps the LTO Module to
outfile.merged.bc prior to CodeGen and after LTO optimizations have been run.
- "llvm-lto -filetype=asm -o outfile" makes llvm-lto emit assembly instead of
object code in outfile.
Both are intended for use in lit tests.
llvm-svn: 253624
Now that the register allocator knows about the barriers on funclet
entry and exit, testing has shown that this is unnecessary.
We still demote PHIs on unsplittable blocks due to the differences
between the IR CFG and the Machine CFG.
llvm-svn: 253619
Summary: The new algorithm is more efficient (O(n), n is number of basic blocks). And it is guaranteed to cover all cases of multiple BB mapped to same line.
Reviewers: dblaikie, davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14738
llvm-svn: 253594
We currently bail out of global localization if the global has non-instruction users. However, often these can be simple bitcasts or constant-GEPs, which we can easily turn into instructions before localizing. Be a bit more aggressive.
llvm-svn: 253584
This change extends r251438 to handle more narrow load promotions
including byte type, unscaled, and signed. For example, this change will
convert :
ldursh w1, [x0, #-2]
ldurh w2, [x0, #-4]
into
ldur w2, [x0, #-4]
asr w1, w2, #16
and w2, w2, #0xffff
llvm-svn: 253577
This is another step towards allowing SimplifyCFG to speculate harder, but then have
CGP clean things up if the target doesn't like it.
Previous patches in this series:
http://reviews.llvm.org/D12882http://reviews.llvm.org/D13297
D13297 should catch most expensive ops, but speculation of cttz/ctlz requires special
handling because of weirdness in the intrinsic definition for handling a zero input
(that definition can probably be blamed on x86).
For example, if we have the usual speculated-by-select expensive op pattern like this:
%tobool = icmp eq i64 %A, 0
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 true) ; is_zero_undef == true
%cond = select i1 %tobool, i64 64, i64 %0
ret i64 %cond
There's an instcombine that will turn it into:
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 false) ; is_zero_undef == false
This CGP patch is looking for that case and despeculating it back into:
entry:
%tobool = icmp eq i64 %A, 0
br i1 %tobool, label %cond.end, label %cond.true
cond.true:
%0 = tail call i64 @llvm.cttz.i64(i64 %A, i1 true) ; is_zero_undef == true
br label %cond.end
cond.end:
%cond = phi i64 [ %0, %cond.true ], [ 64, %entry ]
ret i64 %cond
This unfortunately may lead to poorer codegen (see the changes in the existing x86 test),
but if we increase speculation in SimplifyCFG (the next step in this patch series), then
we should avoid those kinds of cases in the first place.
The need for this patch was originally mentioned here:
http://reviews.llvm.org/D7506
with follow-up here:
http://reviews.llvm.org/D7554
Differential Revision: http://reviews.llvm.org/D14630
llvm-svn: 253573
When dumping function samples or writing them out as text format, it
helps if the samples are emitted sorted by source location. The sorting
of the maps is a bit slow, so we only do it on demand.
llvm-svn: 253568
Copying one mask register to another under BW should be done with kmovq instruction, otherwise we can loose some bits.
Copying 8 bits under DQ may be done with kmovb.
Differential Revision: http://reviews.llvm.org/D14812
llvm-svn: 253563
The lowering patterns for X86ISD::VZEXT_MOVL for 128-bit to 256-bit vectors were just copying the lower xmm instead of actually masking off the first scalar using a blend.
Fix for PR25320.
Differential Revision: http://reviews.llvm.org/D14151
llvm-svn: 253561
Make X86AsmBackend generate smarter nops instead of a bunch of 0x90 for code alignment for CPUs which don't support long nop instructions.
Differential Revision: http://reviews.llvm.org/D14178
llvm-svn: 253557
This provides a way to force a function to have certain attributes from the command line. This can be useful when debugging or doing workload exploration, where manually editing IR is tedious or not possible (due to build systems etc).
The syntax is -force-attribute=function_name:attribute_name
All function attributes are parsed except alignstack as it requires an argument.
llvm-svn: 253550
The masked intrinsics support all integer and floating point data types. I added the pointer type to this list.
Added tests for CodeGen and for Loop Vectorizer.
Updated the Language Reference.
Differential Revision: http://reviews.llvm.org/D14150
llvm-svn: 253544
Optimizations like LoadPRE in GVN will insert new instructions.
If the insertion point is in a already processed BB, they should
get a value number explicitly. If the insertion point is after
current instruction, then just leave it. However, current GVN framework
has no support for it.
In this patch, we just bail out if a VN can't be found.
Dfferential Revision: http://reviews.llvm.org/D14670
A test/Transforms/GVN/pr25440.ll
M lib/Transforms/Scalar/GVN.cpp
llvm-svn: 253536
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
This patch adds support for vector constant folding of integer/float comparisons.
This requires FoldConstantVectorArithmetic to support scalar constant operands (in this case ISD::CONDCASE). In future we should be able to support other scalar constant types as necessary (and possibly start calling FoldConstantVectorArithmetic for all node creations)
Differential Revision: http://reviews.llvm.org/D14683
llvm-svn: 253504
It turns out we decide whether to use SjLj exceptions or some alternative in
two separate places in the backend, and they disagreed with each other. This
led to inconsistent code and is generally a terrible idea.
So make them consistent and add an assert that they *do* match (unfortunately
MCAsmInfo isn't available in opt, so it can't be used to initialise the CodeGen
version directly).
llvm-svn: 253502
This change introduces an instrumentation intrinsic instruction for
value profiling purposes, the lowering of the instrumentation intrinsic
and raw reader updates. The raw profile data files for llvm-profdata
testing are updated.
llvm-svn: 253484
These tests aren't testing that the result is valid syntax; they're testing
that the compiler emits the inline asm operands correctly.
llvm-svn: 253469
This also takes the push/pop syntax another step forward, introducing stack
slot numbers to make it easier to see how expressions are connected. For
example, the value pushed in $push7 is popped in $pop7.
And, this begins an experiment with making get_local and set_local implicit
when an operation directly uses or defines a register. This greatly reduces
clutter. If this experiment succeeds, it may make sense to do this for
const instructions as well.
And, this introduces more special code for ARGUMENTS; hopefully this code
will soon be obviated by proper support for live-in virtual registers.
llvm-svn: 253465
Starting on an input stream that is not at offset 0 would trigger the
assert in WinCOFFObjectWriter.cpp:1065:
assert(getStream().tell() <= (*i)->Header.PointerToRawData &&
"Section::PointerToRawData is insane!");
llvm-svn: 253464
The virtual register containing the address for returned value on
stack should in the DAG be represented with a CopyFromReg node and not
a Register node. Otherwise, InstrEmitter will not make sure that it
ends up in the right register class for the target instruction.
SystemZ needs this, becuause the reg class for address registers is a
subset of the general 64 bit register class.
test/SystemZ/CodeGen/args-07.ll and args-04.ll updated to run with
-verify-machineinstrs.
Reviewed by Hal Finkel.
llvm-svn: 253461
This time I've found a linux box and checked it there. This test now passes.
Because I'd introduced an undefined reference in @bar, gold now returns an error. This doesn't matter for the test itself, because it also emits the remarks the test is checking for. But it does cause LIT to notice a nonzero return code which it faults on.
llvm-svn: 253454
It needs the same fixes as in test/LTO/X86/remarks.ll, but this test appears not to get run on my system (but does on the buildbot). Strange.
llvm-svn: 253452
Summary:
This change teaches LLVM's inliner to track and suitably adjust
deoptimization state (tracked via deoptimization operand bundles) as it
inlines through call sites. The operation is described in more detail
in the LangRef changes.
Reviewers: reames, majnemer, chandlerc, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14552
llvm-svn: 253438
If a section is rw, it is irrelevant if the dynamic linker will write to
it or not.
It looks like llvm implemented this because gcc was doing it. It looks
like gcc implemented this in the hope that it would put all the
relocated items close together and speed up the dynamic linker.
There are two problem with this:
* It doesn't work. Both bfd and gold will map .data.rel to .data and
concatenate the input sections in the order they are seen.
* If we want a feature like that, it can be implemented directly in the
linker since it knowns where the dynamic relocations are.
llvm-svn: 253436
Most linked executables do not have a symbol table in COFF.
However, it is pretty typical to have some export entries. Use those
entries to inform the disassembler about potential function definitions
and call targets.
llvm-svn: 253429
When looking for the best successor from the outer loop for a block
belonging to an inner loop, the edge probability computation can be
improved so that edges in the inner loop are ignored. For example,
suppose we are building chains for the non-loop part of the following
code, and looking for B1's best successor. Assume the true body is very
hot, then B3 should be the best candidate. However, because of the
existence of the back edge from B1 to B0, the probability from B1 to B3
can be very small, preventing B3 to be its successor. In this patch, when
computing the probability of the edge from B1 to B3, the weight on the
back edge B1->B0 is ignored, so that B1->B3 will have 100% probability.
if (...)
do {
B0;
... // some branches
B1;
} while(...);
else
B2;
B3;
Differential revision: http://reviews.llvm.org/D10825
llvm-svn: 253414
Summary:
This change tries to make the root cause of instrumented profile data merge failures clearer.
Previous:
$ llvm-profdata merge test_0.profraw test_1.profraw -o test_merged.profdata
test_1.profraw: foo: Function count mismatch
test_1.profraw: bar: Function count mismatch
test_1.profraw: baz: Function count mismatch
...
Changed:
$ llvm-profdata merge test_0.profraw test_1.profraw -o test_merged.profdata
test_1.profraw: foo: Function basic block count change detected (counter mismatch)
Make sure that all profile data to be merged is generated from the same binary.
test_1.profraw: bar: Function basic block count change detected (counter mismatch)
test_1.profraw: baz: Function basic block count change detected (counter mismatch)
...
Reviewers: dnovillo, davidxl, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14739
llvm-svn: 253384
Summary:
Now that there is a one-to-one mapping from MachineFunction to
WinEHFuncInfo, we don't need to use a DenseMap to select the right
WinEHFuncInfo for the current funclet.
The main challenge here is that X86WinEHStatePass is an IR pass that
doesn't have access to the MachineFunction. I gave it its own
WinEHFuncInfo object that it uses to calculate state numbers, which it
then throws away. As long as nobody creates or removes EH pads between
this pass and SDAG construction, we will get the same state numbers.
The other thing X86WinEHStatePass does is to mark the EH registration
node. Instead of communicating which alloca was the registration through
WinEHFuncInfo, I added the llvm.x86.seh.ehregnode intrinsic. This
intrinsic generates no code and simply marks the alloca in use.
Reviewers: JCTremoulet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14668
llvm-svn: 253378
The instruction combiner previously removed types from filter clauses in Landing Pad instructions if the type had previously been seen in a catch clause. This is incorrect and prevents unexpected exception handlers from rethrowing the caught type.
Differential Revision: http://reviews.llvm.org/D14669
llvm-svn: 253370
While setting function attributes we check all instructions that may access memory. For a call instruction we check all arguments. The special check is required for pointers.
I added vector-of-pointers to the call arguments types that should be checked.
Differential Revision: http://reviews.llvm.org/D14693
llvm-svn: 253363
The underlying issues surrounding codegen for 32-bit vselects have been resolved. The pessimistic costs for 64-bit vselects remain due to the bad
scalarization that is still happening there.
I tested this on A57 in T32, A32 and A64 modes. I saw no regressions, and some improvements.
From my benchmarks, I saw these improvements in A57 (T32)
spec.cpu2000.ref.177_mesa 5.95%
lnt.SingleSource/Benchmarks/Shootout/strcat 12.93%
lnt.MultiSource/Benchmarks/MiBench/telecomm-CRC32/telecomm-CRC32 11.89%
I also measured A57 A32, A53 T32 and A9 T32 and found no performance regressions. I see much bigger wins in third-party benchmarks with this change
Differential Revision: http://reviews.llvm.org/D14743
llvm-svn: 253349
SELECT_CC has the nasty property of having operands with unrelated
types. So if you do something like:
f32 = select_cc f16, f16, f32, f32, cc
You'd only look for the action for <select_cc, f32>, but never f16.
If the types are all legal, but the op isn't (as for f16 on AArch64,
or for f128 on x86_64/AArch64?), then you get into trouble.
For f128, we have softenSetCCOperands to handle this case.
Similarly, for f16, we can directly promote the CC operands.
llvm-svn: 253344
Statepoint lowering currently expects that the target method of a
statepoint only defines a single value. This precludes using
statepoints with ABIs that return values in multiple registers
(e.g. the SysV AMD64 ABI). This change adds support for lowering
statepoints with mutli-def targets.
llvm-svn: 253339
Several places in AsmPrinter.cpp print comments describing MachineOperand
registers using MCRegisterInfo, which uses MCOperand-oriented names. This
doesn't work for targets that use virtual registers exclusively, as
WebAssembly does, since virtual registers are represented and printed
differently.
This patch preserves what seems to be the spirit of r229978, avoiding the
use of TM.getSubtargetImpl(), while still using MachineOperand-oriented
printing for MachineOperands.
Differential Revision: http://reviews.llvm.org/D14709
llvm-svn: 253338
Currently, if the assembler encounters an error after parsing (such as an
out-of-range fixup), it reports this as a fatal error, and so stops after the
first error. However, for most of these there is an obvious way to recover
after emitting the error, such as emitting the fixup with a value of zero. This
means that we can report on all of the errors in a file, not just the first
one. MCContext::reportError records the fact that an error was encountered, so
we won't actually emit an object file with the incorrect contents.
Differential Revision: http://reviews.llvm.org/D14717
llvm-svn: 253328
This adds reportError to MCContext, which can be used as an alternative to
reportFatalError when the assembler wants to try to continue processing the
rest of the file after the error is reported, so that all of the errors ina
file can be reported. It records the fact that an error was encountered, so we
can avoid emitting an object file if any errors occurred.
This patch doesn't add any uses of this function (a later patch will convert
most uses of reportFatalError to use it), but there is a small functional
change: we use the SourceManager to print the error message, even if we have a
null SMLoc. This means that we get a SourceManager-style message, with the file
and line information shown as <unknown>, rather than the "LLVM ERROR" style
used by report_fatal_error.
llvm-svn: 253327
The way prelink used to work was
* The compiler decides if a given section only has relocations that
are know to point to the same DSO. If so, it names it
.data.rel.ro.local<something>.
* The static linker puts all of these together.
* The prelinker program assigns addresses to each library and resolves
the local relocations.
There are many problems with this:
* It is incompatible with address space randomization.
* The information passed by the compiler is redundant. The linker
knows if a given relocation is in the same DSO or not. If could sort
by that if so desired.
* There are newer ways of speeding up DSO (gnu hash for example).
* Even if we want to implement this again in the compiler, the previous
implementation is pretty broken. It talks about relocations that are
"resolved by the static linker". If they are resolved, there are none
left for the prelinker. What one needs to track is if an expression
will require only dynamic relocations that point to the same DSO.
At this point it looks like the prelinker is an historical curiosity.
For example, fedora has retired it because it failed to build for two
releases
(http://pkgs.fedoraproject.org/cgit/prelink.git/commit/?id=eb43100a8331d91c801ee3dcdb0a0bb9babfdc1f)
This patch removes support for it. That is, it stops printing the
".local" sections.
llvm-svn: 253280
This was regressed in r252656 which wasn't quite NFC. Instead of using a
custom instruction as before, use a pattern to select CONST_I32 for the
global addrs.
Differential Revision: http://reviews.llvm.org/D14587
llvm-svn: 253276
Summary:
Previously return type information for a function was derived from
return dag nodes. But this didn't work for dags with != return node. So
instead compute it directly from the LLVM function as is done for imports.
Differential Revision: http://reviews.llvm.org/D14593
llvm-svn: 253251
Summary: This is to match the new version in the spec
Reviewers: sunfish
Subscribers: jfb, llvm-commits, dschuff
Differential Revision: http://reviews.llvm.org/D14519
llvm-svn: 253249
On top of that, don't bother allocating and initializing UnwindHelp if
we don't have any funclets. Currently we always use RBP as our frame
pointer when funclets are present, so this change makes it impossible to
come here without any fixed stack objects.
Fixes PR25533.
llvm-svn: 253245
We sometimes create intermediate subtract instructions during
reassociation. Adding these to the worklist to revisit exposes many
additional reassociation opportunities.
Patch by Aditya Nandakumar.
llvm-svn: 253240
We tried to move the insertion point beyond instructions like landingpad
and cleanuppad.
However, we *also* tried to move past catchpad. This is problematic
because catchpad is also a terminator.
This fixes PR25541.
llvm-svn: 253238
Storing the source location of the expression that created a constant pool
entry allows us to emit better error messages if we later discover that the
expression cannot be represented by a relocation.
Differential Revision: http://reviews.llvm.org/D14646
llvm-svn: 253220
The MCValue class can store a SMLoc to allow better error messages to be
emitted if an error is detected after parsing. The ARM and AArch64 assembly
parsers were not setting this, so error messages did not have source
information.
Differential Revision: http://reviews.llvm.org/D14645
llvm-svn: 253219
Summary:
* ARMv6KZ is the "canonical" name, given in the ARMARM
* ARMv6Z is an "official abbreviation" for it, mentioned in the ARMARM
* ARMv6ZK is a popular misspelling, which we should support as an alias.
The patch corrects the handling of the names.
Functional changes:
* ARMv6Z no longer treated as an architecture in its own right
* ARMv6ZK renamed to ARMv6KZ, accepting ARMv6ZK as an alias
* arm1176jz-s and arm1176jzf-s recognized as ARMv6ZK, instead of ARMv6K
* default ARMv6K CPU changed to arm1176j-s
Reviewers: rengolin, logan, compnerd
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14568
llvm-svn: 253206
This was left implicit and never ever checked, which means we could have a CMPZ against some non-zero value and we were carrying on with BFI conversion regardless.
Caught by Oliver Stannard using csmith; regression test added.
llvm-svn: 253195
Summary:
This fails a check in Verifier.cpp, which checks for location matches between the declared
variable and the !dbg attachments.
Reviewers: dnovillo, dblaikie, danielcdh
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14657
llvm-svn: 253194
The AArch64 assembler was silently ignoring instructions like this:
ldr foo, =bar
AArch64AsmParser::parseOperand was returning true as the parse failed, but was
not calling AArch64AsmParser::Error to report this to the user, so the
instruction was ignored without printing an error message.
Differential Revision: http://reviews.llvm.org/D14651
llvm-svn: 253193
Summary: Since we're passing references to dbg.value as pointers,
we need to have the frontend properly declare their sizes and
alignments (as it already does for regular pointers) in preparation
for my upcoming patch to have the verifer check that the sizes agree.
Also augment the backend logic that skips actually emitting this
information into DWARF such that it also handles reference types.
Reviewers: aprantl, dexonsmith, dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D14275
llvm-svn: 253186
Summary: Moving landingpads into successor basic blocks makes the
verifier sad. Teach Sink that much like PHI nodes and terminator
instructions, landingpads (and cleanuppads, etc.) may not be moved
between basic blocks.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14475
llvm-svn: 253182
Global to local demotion can speed up programs that use globals a lot. It is particularly useful with LTO, when the entire call graph is known and most functions have been internalized.
For a global to be demoted, it must only be accessed by one function and that function:
1. Must never recurse directly or indirectly, else the GV would be clobbered.
2. Must never rely on the value in GV at the start of the function (apart from the initializer).
GlobalOpt can already do this, but it is hamstrung and only ever tries to demote globals inside "main", because C++ gives extra guarantees about how main is called - once and only once.
In LTO mode, we can often prove the first property (if the function is internal by this point, we know enough about the callgraph to determine if it could possibly recurse). FunctionAttrs now infers the "norecurse" attribute for this reason.
The second property can be proven for a subset of functions by proving that all loads from GV are dominated by a store to GV. This is conservative in the name of compile time - this only requires a DominatorTree which is fairly cheap in the grand scheme of things. We could do more fancy stuff with MemoryDependenceAnalysis too to catch more cases but this appears to catch most of the useful ones in my testing.
llvm-svn: 253168
The current implementation of GEP visitor in InstCombine fails with assertion on Vector GEP with mix of scalar and vector types, like this:
getelementptr double, double* %a, <8 x i32> %i
(It fails to create a "sext" from <8 x i32> to <8 x i64>)
I fixed it and added some tests.
Differential Revision: http://reviews.llvm.org/D14485
llvm-svn: 253162
Summary:
Currently we always recompute LCSSA for outer loops after unrolling an
inner loop. That leads to compile time problem when we have big loop
nests, and we can solve it by avoiding unnecessary work. For instance,
if w eonly do partial unrolling, we don't break LCSSA, so we don't need
to rebuild it. Also, if all exits from the inner loop are inside the
enclosing loop, then complete unrolling won't break LCSSA either.
I replaced unconditional LCSSA recomputation with conditional recomputation +
unconditional assert and added several tests, which were failing when I
experimented with it.
Soon I plan to follow up with a similar patch for recalculation of dominators
tree.
Reviewers: hfinkel, dexonsmith, bogner, joker.eph, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14526
llvm-svn: 253126
attribute.
Even if the target supports shrink-wrapping, the prologue and epilogue
must not move because a crash can happen anywhere and sanitizers need
to be able to unwind from the PC of the crash.
llvm-svn: 253116
This allows us to transform the below loop into a memcpy.
void test(unsigned *__restrict__ a, unsigned *__restrict__ b) {
for (int i = 2047; i >= 0; --i) {
a[i] = b[i];
}
}
This is the memcpy version of r251518, which added support for memset with
negative strided loops.
llvm-svn: 253091
The C++ EH personality automatically restores ESP from the C++ EH
registration node after a catchret. I mistakenly thought it was like
SEH, which does not restore ESP.
It makes sense for C++ EH to differ from SEH here because SEH does not
use funclets for catches, and does not allow catching inside of finally.
C++ EH may need to unwind through multiple catch funclets and eventually
catchret to some outer funclet. Therefore, the runtime has to keep track
of which ESP to use with catchret, rather than having the compiler
reload it manually.
llvm-svn: 253084
Use ScalarEvolution to calculate memory access bounds.
Handle function calls based on readnone/nocapture attributes.
Handle memory intrinsics with constant size.
This change improves both recall and precision of IsAllocaSafe.
See the new tests (ex. BitCastWide) for the kind of code that was wrongly
classified as safe.
SCEV efficiency seems to be limited by the fact the SafeStack runs late
(in CodeGenPrepare), and many loops are unrolled or otherwise not in LCSSA.
llvm-svn: 253083
This patch is enabling combining UNPCKL with vector_shuffle that moves the upper
half of a vector into the lower half, into a UNPCKH instruction. For example:
t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1, undef:v16i8
t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
will be combined to:
t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
Differential revision: http://reviews.llvm.org/D14399
llvm-svn: 253067
This is a recommit of 252842 which was reverted in 252859. The issue was
using %s format specifier for a StringRef - used Format's
left_justify(StringRef, int) instead.
It'd be nice to have __attribute__((format(..))) on llvm::format, but
apparently it's only implemented for c-style variadics, not C++ variadic
templates. Perhaps we could fix that & conditionalize the attribute on
such...
llvm-svn: 253065
Something I missed from Hal's review, rightly pointed out by Ben Kramer - we should make sure the expansion is properly checked as it can be easy for bugs to creep in.
I've checked the scalar i8 expansion here and the vector i8 expansion in a previous commit.
llvm-svn: 253024
Richard Trieu noted that UBSan detected an overflowing shift, and the obvious fix caused a crash.
What was happening was that the shiftee (1U) was indeed too small for the possible range of shifts it had to handle, but also we were using "VT.getSizeInBits()" to get the maximum type bitwidth, but we wanted "VT.getScalarSizeInBits()" to get the vector lane size instead of the entire vector size.
Use an APInt for the shift and VT.getScalarSizeInBits().
llvm-svn: 253023
Summary:
This change addresses two possible instances of user error / confusion when
merging sampled profile data.
Previously any input that didn't match the raw or processed instrumented format
would automatically be interpreted as instrumented profile text format data.
No error would be reported during the merge.
Example:
If foo-sampled.profdata and bar-sampled.profdata are binary sampled profiles:
Old behavior:
$ llvm-profdata merge foo-sampled.profdata bar-sampled.profdata -output foobar-sampled.profdata
$ llvm-profdata show -sample foobar-sampled.profdata
error: foobar-sampled.profdata:1: Expected 'mangled_name:NUM:NUM', found lprofi
This change adds basic checks for valid input data when assuming text input.
It also makes error messages related to file format validity more specific about
the assumbed profile data type.
New behavior:
$ llvm-profdata merge foo-sampled.profdata bar-sampled.profdata -o foobar-sampled.profdata
error: foo.profdata: Unrecognized instrumentation profile encoding format
Perhaps you forgot to use the -sample option?
Reviewers: bogner, davidxl, dnovillo
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D14558
llvm-svn: 253009
Summary:
The value that the CoreCLR personality passes to a funclet for the
establisher frame may be the root function's frame or may be the parent
funclet's (mostly empty) frame in the case of nested funclets. Each
funclet stores a pointer to the root frame in its own (mostly empty)
frame, as does the root function itself. All frames allocate this slot at
the same offset, measured from the post-prolog stack pointer, so that the
same sequence can accept any ancestor as an establisher frame parameter
value, and so that a single offset can be reported to the GC, which also
looks at this slot.
This change allocate the slot when processing function entry, and records
its frame index on the WinEHFuncInfo object, then inserts the code to
set/copy it during prolog emission.
Reviewers: majnemer, AndyAyers, pgavlin, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14614
llvm-svn: 252983
It made it possible to apply the memory folding optimization for the 2nd
operand of FMA*_Int instructions.
Reviewer: Quentin Colombet
Differential Revision: http://reviews.llvm.org/D14550
llvm-svn: 252973
This reverts commit r252565.
This also includes the revert of the commit mentioned below in order to
avoid breaking tests in AMDGPU:
Revert "AMDGPU: Set isAllocatable = 0 on VS_32/VS_64"
This reverts commit r252674.
llvm-svn: 252956
Update the ThinLTO function importing test to use DAG forms of checks so
that it is more tolerant of changes to relative ordering between
imported decls/defs. This reduces the number of changes required by the
comdat importing patch I am sending for review shortly.
llvm-svn: 252932
ShrinkWrapping does not understand exception handling constraints for now, so
make sure we do not mess with them by aborting on functions that use EH
funclets.
llvm-svn: 252917
Summary:
This change addresses two possible instances of user error / confusion when
merging sampled profile data.
Previously any input that didn't match the raw or processed instrumented format
would automatically be interpreted as instrumented profile text format data.
No error would be reported during the merge.
Example:
If foo-sampled.profdata and bar-sampled.profdata are binary sampled profiles:
Old behavior:
$ llvm-profdata merge foo-sampled.profdata bar-sampled.profdata -output foobar-sampled.profdata
$ llvm-profdata show -sample foobar-sampled.profdata
error: foobar-sampled.profdata:1: Expected 'mangled_name:NUM:NUM', found lprofi
This change adds basic checks for valid input data when assuming text input.
It also makes error messages related to file format validity more specific about
the assumbed profile data type.
New behavior:
$ llvm-profdata merge foo-sampled.profdata bar-sampled.profdata -o foobar-sampled.profdata
error: foo.profdata: Unrecognized instrumentation profile encoding format
Perhaps you forgot to use the -sample option?
Reviewers: bogner, davidxl, dnovillo
Subscribers: davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D14558
llvm-svn: 252916
Switch to MC for instruction printing.
This encompasses several changes which are all interconnected:
- Use the MC framework for printing almost all instructions.
- AsmStrings are now live.
- This introduces an indirection between LLVM vregs and WebAssembly registers,
and a new pass, WebAssemblyRegNumbering, for computing a basic the mapping.
This addresses some basic issues with argument registers and unused registers.
- The way ARGUMENT instructions are handled no longer generates redundant
get_local+set_local for every argument.
This also changes the assembly syntax somewhat; most notably, MC's printing
does not use sigils on label names, so those are no longer present, and
push/pop now have a sigil to keep them unambiguous.
The usage of set_local/get_local/$push/$pop will continue to evolve
significantly. This patch is just one step of a larger change.
llvm-svn: 252910
LLVM Missing the following instructions: fadd\fdiv\fmul\fsub\fsubr\fdivr.
GAS and MS supporting this instruction and lowering them in to a faddp\fdivp\fmulp\fsubp\fsubrp\fdivrp instructions.
Differential Revision: http://reviews.llvm.org/D14217
llvm-svn: 252908
I completely misunderstood what ARMISD::CMPZ means. It's not "compare equal to zero", it's "compare, only setting the zero/Z flag". It can either be equal-to-zero or not-equal-to-zero, and we weren't checking what sense it was.
If it's equal-to-zero, we can swap the operands around and pretend like it is not-equal-to-zero, which is both a bug fix and lets us handle more cases.
llvm-svn: 252891
Summary:
Support for R_MIPS_NONE allows us to parse MIPS16's usage of .reloc.
R_MIPS_32 was included to be able to better test the directive.
Targets can add their relocations by overriding MCAsmBackend::getFixupKind().
Subscribers: grosbach, rafael, majnemer, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D13659
llvm-svn: 252888
Summary:
This patch overrides TargetFrameLowering::getFrameIndexReference() in order to
specify the correct register when the function needs dynamic stack realignment.
The values returned from this function are used in order to create DW_AT_locations
for DWARF info. These locations would use the wrong registers as it's been
reported in PR25028.
Reviewers: dsanders
Subscribers: dean, llvm-commits
Differential Revision: http://reviews.llvm.org/D13511
llvm-svn: 252882
There are plenty more instcombines we could probably do with bitreverse, but this seems like a very obvious and trivial starting point and was brought up by Hal in his review.
llvm-svn: 252879
Several backends have instructions to reverse the order of bits in an integer. Conceptually matching such patterns is similar to @llvm.bswap, and it was mentioned in http://reviews.llvm.org/D14234 that it would be best if these patterns were matched in InstCombine instead of reimplemented in every different target.
This patch introduces an intrinsic @llvm.bitreverse.i* that operates similarly to @llvm.bswap. For plumbing purposes there is also a new ISD node ISD::BITREVERSE, with simple expansion and promotion support.
The intention is that InstCombine's BSWAP detection logic will be extended to support BITREVERSE too, and @llvm.bitreverse intrinsics emitted (if the backend supports lowering it efficiently).
llvm-svn: 252878
In `MachOObjectFile::getSymbolType` we currently always return `SymbolRef::ST_Function` for symbols from any section. In order for llvm-symbolizer to correctly symbolize Mach-O globals, symbols from data and BSS sections should return `SymbolRef::ST_Data`.
Differential Revision: http://reviews.llvm.org/D14576
llvm-svn: 252867
Added "macro" option to "-debug-dump" flag, which trigger parsing and dumping of the ".debug_macinfo" section.
Differential Revision: http://reviews.llvm.org/D14294
llvm-svn: 252866
A function can be marked as norecurse if:
* The SCC to which it belongs has cardinality 1; and either
a) It does not call any non-norecurse function. This includes self-recursion; or
b) It only has one callsite and the function that callsite is within is marked norecurse.
a) is best propagated bottom-up and b) is best propagated top-down.
We build up the norecurse attributes bottom-up using the existing SCC pass, and mark functions with no obvious recursion (but not provably norecurse) to sweep later, top-down.
llvm-svn: 252862
This encompasses several changes which are all interconnected:
- Use the MC framework for printing almost all instructions.
- AsmStrings are now live.
- This introduces an indirection between LLVM vregs and WebAssembly registers,
and a new pass, WebAssemblyRegNumbering, for computing a basic the mapping.
This addresses some basic issues with argument registers and unused registers.
- The way ARGUMENT instructions are handled no longer generates redundant
get_local+set_local for every argument.
This also changes the assembly syntax somewhat; most notably, MC's printing
use sigils on label names, so those are no longer present, and push/pop now
have a sigil to keep them unambiguous.
The usage of set_local/get_local/$push/$pop will continue to evolve
significantly. This patch is just one step of a larger change.
llvm-svn: 252858
- Factor out code to query and modify the sign bit of a floatingpoint
value as an integer. This also works if none of the targets integer
types is big enough to hold all bits of the floatingpoint value.
- Legalize FABS(x) as FCOPYSIGN(x, 0.0) if FCOPYSIGN is available,
otherwise perform bit manipulation on the sign bit. The previous code
used "x >u 0 ? x : -x" which is incorrect for x being -0.0! It also
takes 34 instructions on ARM Cortex-M4. With this patch we only
require 5:
vldr d0, LCPI0_0
vmov r2, r3, d0
lsrs r2, r3, #31
bfi r1, r2, #31, #1
bx lr
(This could be further improved if the compiler would recognize that
r2, r3 is zero).
- Only lower FCOPYSIGN(x, y) = sign(x) ? -FABS(x) : FABS(x) if FABS is
available otherwise perform bit manipulation on the sign bit.
- Perform the sign(x) test by masking out the sign bit and comparing
with 0 rather than shifting the sign bit to the highest position and
testing for "<s 0". For x86 copysignl (on 80bit values) this gets us:
testl $32768, %eax
rather than:
shlq $48, %rax
sets %al
testb %al, %al
Differential Revision: http://reviews.llvm.org/D11172
llvm-svn: 252839
When working with tokens, it is often the case that one has instructions
which consume a token and produce a new token. Currently, we have no
mechanism to represent an initial token state.
Instead, we can create a notional "empty token" by inventing a new
constant which captures the semantics we would like. This new constant
is called ConstantTokenNone and is written textually as "token none".
Differential Revision: http://reviews.llvm.org/D14581
llvm-svn: 252811
Summary:
This change introduces the notion of "deoptimization" operand bundles.
LLVM can recognize and optimize these in more precise ways than it can a
generic "unknown" operand bundles.
The current form of this special recognition / optimization is an enum
entry in LLVMContext, a LangRef blurb and a verifier rule. Over time we
will teach LLVM to do more aggressive optimization around deoptimization
operand bundles, exploiting known facts about kinds of state
deoptimization operand bundles are allowed to track.
Reviewers: reames, majnemer, chandlerc, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14551
llvm-svn: 252806
This is a follow-up from the previous discussion on the thread:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151019/307763.html
The LibLTO lto_get_error_message() API reads error messages from a std::string
sLastErrorString. Instead of passing this string around as an argument, this
patch creates a diagnostic handler and then sends this handler to the
constructor of LTOCodeGenerator.
Differential Revision: http://reviews.llvm.org/D14313
llvm-svn: 252791
Summary:
Don't fold
(zext (and (load x), cst)) -> (and (zextload x), (zext cst))
if
(and (load x) cst)
will match as a zextload already and has additional users.
For example, the following IR:
%load = load i32, i32* %ptr, align 8
%load16 = and i32 %load, 65535
%load64 = zext i32 %load16 to i64
store i32 %load16, i32* %dst1, align 4
store i64 %load64, i64* %dst2, align 8
used to produce the following aarch64 code:
ldr w8, [x0]
and w9, w8, #0xffff
and x8, x8, #0xffff
str w9, [x1]
str x8, [x2]
but with this change produces the following aarch64 code:
ldrh w8, [x0]
str w8, [x1]
str x8, [x2]
Reviewers: resistor, mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14340
llvm-svn: 252789
Summary: Other personalities don't use this special frame slot.
Reviewers: majnemer, andrew.w.kaylor, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14580
llvm-svn: 252778
Summary: Inlined callsites need to be emitted in debug info so that sample profile can be annotated to the correct inlined instance.
Reviewers: dnovillo, dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D14511
llvm-svn: 252768
The discriminators pass relied on the presence of llvm.dbg.cu to decide
whether to add discriminators, but this fails in the case where debug
info is only enabled partially when -fprofile-sample-use is active.
The reason llvm.dbg.cu is not present in these cases is to prevent
codegen from emitting debug info (as it is only used for the sample
profile pass).
This changes the discriminators pass to also emit discriminators even
when debug info is not being emitted.
llvm-svn: 252763
MIPS32 has instructions for efficient count-leading/trailing-zeros, so this should be
considered a cheap operation (and therefore fair game for speculation) for any MIPS32
implementation.
The net result of allowing this speculation for the regression tests in this patch is
that we get this code:
ctlz:
jr $ra
clz $2, $4
cttz:
addiu $1, $4, -1
not $2, $4
and $1, $2, $1
clz $1, $1
addiu $2, $zero, 32
jr $ra
subu $2, $2, $1
Instead of:
ctlz:
beqz $4, $BB0_2
addiu $2, $zero, 32
clz $2, $4
$BB0_2:
jr $ra
nop
cttz:
beqz $4, $BB1_2
addiu $2, $zero, 32
addiu $1, $4, -1
not $2, $4
and $1, $2, $1
clz $1, $1
addiu $2, $zero, 32
subu $2, $2, $1
$BB1_2:
jr $ra
nop
See D14469 for the larger motivation.
Differential Revision: http://reviews.llvm.org/D14500
llvm-svn: 252755
The committer didn't respond at http://reviews.llvm.org/D14338, so we've got to fix this for them.
This test doesn't pass with thumbv6, so I suppose what they meant is thumbv7.
llvm-svn: 252754
Summary:
Only DSPr2 is present because it appears we've never added DSPr1 tests.
We'll have to correct that in a later patch.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14448
llvm-svn: 252752
If we have a chain of BFIs, we may be able to combine several together into one merged BFI. We can do this if the "from" bits from one BFI OR'd with the "from" bits from the other BFI form a contiguous range, and the same with the "to" bits.
llvm-svn: 252740
If possible and profitable, replace lea %reg, 1(%reg) and lea %reg, -1(%reg) with inc %reg and dec %reg respectively.
Patch by: anton.nadolsky@intel.com
Differential Revision: http://reviews.llvm.org/D14059
llvm-svn: 252722
Summary:
This change teaches isImpliedCondition to prove things like
(A | 15) < L ==> (A | 14) < L
if the low 4 bits of A are known to be zero.
Depends on D14391
Reviewers: majnemer, reames, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14392
llvm-svn: 252673
This patch adds a pass for doing PowerPC peephole optimizations at the
MI level while the code is still in SSA form. This allows for easy
modifications to the instructions while depending on a subsequent pass
of DCE. Both passes are very fast due to the characteristics of SSA.
At this time, the only peepholes added are for cleaning up various
redundancies involving the XXPERMDI instruction. However, I would
expect this will be a useful place to add more peepholes for
inefficiencies generated during instruction selection. The pass is
placed after VSX swap optimization, as it is best to let that pass
remove unnecessary swaps before performing any remaining clean-ups.
The utility of these clean-ups are demonstrated by changes to four
existing test cases, all of which now have tighter expected code
generation. I've also added Eric Schweiz's bugpoint-reduced test from
PR25157, for which we now generate tight code. One other test started
failing for me, and I've fixed it
(test/Transforms/PlaceSafepoints/finite-loops.ll) as well; this is not
related to my changes, and I'm not sure why it works before and not
after. The problem is that the CHECK-NOT: of "statepoint" from test1
fails because of the "statepoint" in test2, and so forth. Adding a
CHECK-LABEL in between keeps the different occurrences of that string
properly scoped.
llvm-svn: 252651
already emitted and fix a latent bug in DIECloner where the DW_CHILDREN_yes
flag is set based on the number of children in the input DIE rather than
the number of children that are actually being cloned.
rdar://problem/23439845
llvm-svn: 252649
Summary:
The module linker lazy links some "discardable if unused" global
values (e.g. linkonce), materializing and linking them only
if they are referenced in the module. If a comdat group contains a
linkonce member that is not referenced, however, it would not be
materialized and linked, leading to an incomplete comdat group.
If there are other object files not part of the same LTO link that also
define and use that comdat group, the linker may select the incomplete
group leading to link time unsats.
To solve this, whenever a global value body is linked, make sure we
materialize any other members of the same comdat group that are not yet
materialized. This ensures they are in the lazy link list and get linked
as well.
Added new test and adjusted old test to remove parts that didn't
make sense with fix.
Reviewers: rafael
Subscribers: dexonsmith, davidxl, llvm-commits
Differential Revision: http://reviews.llvm.org/D14516
llvm-svn: 252647
ARM V6T2 has instructions for efficient count-leading/trailing-zeros, so this should be
considered a cheap operation (and therefore fair game for speculation) for any ARM V6T2
implementation.
The net result of allowing this speculation for the regression tests in this patch is
that we get this code:
ctlz:
clz r0, r0
bx lr
cttz:
rbit r0, r0
clz r0, r0
bx lr
Instead of:
ctlz:
cmp r0, #0
moveq r0, #32
clzne r0, r0
bx lr
cttz:
cmp r0, #0
moveq r0, #32
rbitne r0, r0
clzne r0, r0
bx lr
This will help solve a general speculation/despeculation problem noted in PR24818:
https://llvm.org/bugs/show_bug.cgi?id=24818
Differential Revision: http://reviews.llvm.org/D14469
llvm-svn: 252639
This is a cleaned up version of a patch by John Regehr with permission. Originally found via the souper tool.
If we add an odd number to x, then bitwise-and the result with x, we know that the low bit of the result must be zero. Either it was zero in x originally, or the add cleared it in the temporary value. As a result, one of the two values anded together must have the bit cleared.
Differential Revision: http://reviews.llvm.org/D14315
llvm-svn: 252629
Ensure WeakAny variables are imported as ExternalWeak declarations. To
handle WeakAny more consistently and fix this issue:
1) Update helper doImportAsDefinition to properly flag WeakAny variables
and aliases as not importing defintions.
Update callers of doImportAsDefinition to remove now redundant checks for
WeakAny aliases, or ignore aliases, as appropriate.
2) Add any !doImportAsDefinition GVs to DoNotLinkFromSource set during
linking of the GV prototype, where we usually add GVs to the
DoNotLinkFromSource set for other reasons.
Remove now unnecessary adding of WeakAny aliases to
DoNotLinkFromSource set from copyGlobalAliasProto.
Remove now unnecessary guard against linking non-imported function
bodies from ModuleLinker::run.
llvm-svn: 252626
AArch64 has instructions for efficient count-leading/trailing-zeros, so this should be
considered a cheap operation (and therefore fair game for speculation) for any AArch64
implementation.
The net result of allowing this speculation for the regression tests in this
patch is that we get this code:
ctlz:
clz w0, w0
ret
cttz:
rbit w8, w0
clz w0, w8
ret
Instead of:
ctlz:
cbz w0, .LBB0_2
clz w0, w0
ret
.LBB0_2:
orr w0, wzr, #0x20
ret
cttz:
cbz w0, .LBB1_2
rbit w8, w0
clz w0, w8
ret
.LBB1_2:
orr w0, wzr, #0x20
ret
See D14469 for the larger motivation.
Differential Revision: http://reviews.llvm.org/D14505
llvm-svn: 252625
This is one of the problems noted in PR25016:
https://llvm.org/bugs/show_bug.cgi?id=25016
and:
http://lists.llvm.org/pipermail/llvm-dev/2015-October/090998.html
The spilling problem is independent and not addressed by this patch.
The MachineCombiner was doing reassociations that don't improve or even worsen the critical path.
This is caused by inclusion of the "slack" factor when calculating the critical path of the original
code sequence. If we don't add that, then we have a more conservative cost comparison of the old code
sequence vs. a new sequence. The more liberal calculation must be preserved, however, for the AArch64
MULADD patterns because benchmark regressions were observed without that.
The two failing test cases now have identical asm that does what we want:
a + b + c + d ---> (a + b) + (c + d)
Differential Revision: http://reviews.llvm.org/D13417
llvm-svn: 252616
Added fixes for stage2 failures: CMOV is not commutable; commuting the operands results in the condition being flipped! d'oh!
Original commit message:
If we have a CMOV, OR and AND combination such as:
if (x & CN)
y |= CM;
And:
* CN is a single bit;
* All bits covered by CM are known zero in y;
Then we can convert this to a sequence of BFI instructions. This will always be a win if CM is a single bit, will always be no worse than the TST & OR sequence if CM is two bits, and for thumb will be no worse if CM is three bits (due to the extra IT instruction).
llvm-svn: 252606
This is fix for PR24059.
When we are hoisting instruction above some condition it may turn out
that metadata on this instruction was control dependant on the condition.
This metadata becomes invalid and we need to drop it.
This patch should cover most obvious places of speculative execution (which
I have found by greping isSafeToSpeculativelyExecute). I think there are more
cases but at least this change covers the severe ones.
Differential Revision: http://reviews.llvm.org/D14398
llvm-svn: 252604
For big-endian targets, when we merge two halfword loads into a word load, the
order of the halfwords in the loaded value is reversed compared to
little-endian, so the load-store optimiser needs to swap the destination
registers.
This does not affect merging of two word loads, as we use ldp, which treats the
memory as two separate 32-bit words.
llvm-svn: 252597
For CoreCLR on Windows, stack probes must be emitted as inline sequences that probe successive stack pages
between the current stack limit and the desired new stack pointer location. This implements support for
the inline expansion on x64.
For in-body alloca probes, expansion is done during instruction lowering. For prolog probes, a stub call
is initially emitted during prolog creation, and expanded after epilog generation, to avoid complications
that arise when introducing new machine basic blocks during prolog and epilog creation.
Added a new test case, modified an existing one to exclude non-x64 coreclr (for now).
Add test case
Fix tests
llvm-svn: 252578
AArch64 has the ability to use the top 8-bits of an "address" for extra
information, with the memory subsystem automatically masking them off for loads
and stores. When that's happening, we can sometimes skip masks on memory
operations in the compiler.
However, this requires the host OS and support stack to preserve those bits so
it can't be enabled everywhere. In principle iOS 8.0 and above do take the
required precautions and but we'll put it under a flag for now.
llvm-svn: 252573
Lower LLVM's 'unreachable' terminator to ISD::TRAP, and lower ISD::TRAP to
wasm's 'unreachable' expression.
WebAssembly type-checks expressions, but a noreturn function with a
return type that doesn't match the context will cause a check
failure. So we lower LLVM 'unreachable' to ISD::TRAP and then lower that
to WebAssembly's 'unreachable' expression, which typechecks in any
context and causes a trap if executed.
Differential Revision: http://reviews.llvm.org/D14515
llvm-svn: 252566
This fixes a bug in ARMAsmPrinter::EmitUnwindingInstruction where
llvm_unreachable was reached because t2ADDri wasn't handled.
Test case provided by Tim Northover.
rdar://problem/23270609
http://reviews.llvm.org/D14518
llvm-svn: 252557
The motivation for this patch starts with the epic fail example in PR18007:
https://llvm.org/bugs/show_bug.cgi?id=18007
...unfortunately, this patch makes no difference for that case, but it solves some
simpler cases. We'll get there some day. :)
The current 'or' matching code was using computeKnownBits() via
isBaseWithConstantOffset() -> MaskedValueIsZero(), but that's an unnecessarily limited use.
We can do more by copying the logic in ValueTracking's haveNoCommonBitsSet(), so we can
treat the 'or' as if it was an 'add'.
There's a TODO comment here because we should lift the bit-checking logic into a helper
function, so it's not duplicated in DAGCombiner.
An example of the better LEA matching:
leal (%rdi,%rdi), %eax
andl $1, %esi
orl %esi, %eax
Becomes:
andl $1, %esi
leal (%rsi,%rdi,2), %eax
Differential Revision: http://reviews.llvm.org/D13956
llvm-svn: 252515
For some reason we'd never run MachineVerifier on WinEH code, and you
explicitly have to ask for it with llc. I added it to a few test cases
to get some coverage.
Fixes PR25461.
llvm-svn: 252512
Summary: Call instructions that are from the same line and same basic block needs to have separate discriminators to distinguish between different callsites.
Reviewers: davidxl, dnovillo, dblaikie
Subscribers: dblaikie, probinson, llvm-commits
Differential Revision: http://reviews.llvm.org/D14464
llvm-svn: 252492
When GlobalOpt splits an internal, global variable with an aggregate type, it
should propagate the externally_initialized flag to the newly created globals.
This makes the pass safe for our downstream use of this flag, while still
allowing some useful optimisations (such as removing dead parts of the split
aggregate) to be performed.
Differential Revision: http://reviews.llvm.org/D13382
llvm-svn: 252490
Implemented as many of Michael's suggestions as were possible:
* clang-format the added code while it is still fresh.
* tried to change Value* to Instruction* in many places in computeMinimumValueSizes - unfortunately there are several places where Constants need to be handled so this wasn't possible.
* Reduce the pass list on loop-vectorization-factors.ll.
* Fix a bug where we were querying MinBWs for I->getOperand(0) but using MinBWs[I].
llvm-svn: 252469
Summary:
LAA currently generates a set of SCEV predicates that must be checked by users.
In the case of Loop Distribute/Loop Load Elimination, no such predicates could have
been emitted, since we don't allow stride versioning. However, in the future there
could be SCEV predicates that will need to be checked.
This change adds support for SCEV predicate versioning in the Loop Distribute, Loop
Load Eliminate and the loop versioning infrastructure.
Reviewers: anemet
Subscribers: mssimpso, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D14240
llvm-svn: 252467
Summary:
This matches the sum-of-absdiff patterns emitted by the vectoriser using log2 shuffles.
Relies on D14207 to be able to match the `extract_subvector(..., 0)`
Reviewers: t.p.northover, jmolloy
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D14208
llvm-svn: 252465
"GCC requires the freestanding environment provide memcpy, memmove, memset
and memcmp": https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Standards.html
Hence in GNUEABI targets LLVM should not convert 'memops' to their equivalent
'__aeabi_memops'. This convertion violates GCC contract.
The -meabi flag controls whether or not LLVM will modify 'memops' in GNUEABI
targets.
Without -meabi: use the triple default EABI.
With -meabi=default: use the triple default EABI.
With -meabi=gnu: use 'memops'.
With -meabi=4 or -meabi=5: use '__aeabi_memops'.
With -meabi set to an unknown value: same as -meabi=default.
Patch by Vinicius Tinti.
llvm-svn: 252462
We don't currently have any runtime library functions for operations on
f16 values (other than conversions to and from f32 and f64), so we
should always promote it to f32, even if that is not a legal type. In
that case, the f32 values would be softened to f32 library calls.
SoftenFloatRes_FP_EXTEND now needs to check the promoted operand's type,
as it may ne a no-op or require a different library call.
getCopyFromParts and getCopyToParts now need to cope with a
floating-point value stored in a larger integer part, as is the case for
any target that needs to store an f16 value in a 32-bit integer
register.
Differential Revision: http://reviews.llvm.org/D12856
llvm-svn: 252459
Under most circumstances, if SCEV can simplify X-Y to a constant, then it can
also simplify Y-X to a constant. However, there is no guarantee that this is
always true, and concensus is not to consider that a correctness bug in SCEV
(although it is undesirable).
PPCLoopPreIncPrep gathers pointers used to access memory (via loads, stores and
prefetches) into buckets, where in each bucket the relative pointer offsets are
constant. We used to keep each bucket as a multimap, where SCEV's subtraction
operation was used to define the ordering predicate. Instead, use a fixed SCEV
base expression for each bucket, record the constant offsets from that base
expression, and adjust it later, if desirable, once all pointers have been
collected.
Doing it this way should be more compile-time efficient than the previous
scheme (in addition to making the implementation less sensitive to SCEV
simplification quirks).
Fixes PR25170.
llvm-svn: 252417
The TailDuplication machine pass ran across a malformed CFG: a PHI node
referred it's predecessor's predecessor instead of it's predecessor.
This occurred because we split the edge in X86ISelLowering when we
processed the CATCHRET but forgot to do something about the PHI nodes.
This fixes PR25444.
llvm-svn: 252413
Summary:
Teach the FunctionAttrs to do the right thing for IR with operand
bundles.
Reviewers: reames, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14408
llvm-svn: 252387
Summary:
This change fixes an iterator wraparound bug in
`determinePointerReadAttrs`.
Ideally, ++'ing off the `end()` of an iplist should result in a failed
assert, but currently iplist seems to silently wrap to the head of the
list on `end()++`. This is why the bad behavior is difficult to
demonstrate.
Reviewers: chandlerc, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14350
llvm-svn: 252386
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
FoldPHIArgZextsIntoPHI cannot insert an instruction after the PHI if
there is an EHPad in the BB. Doing so would result in an instruction
inserted after a terminator.
llvm-svn: 252377
We tried to insert a cast of a phi in a block whose terminator is an
EHPad. This is invalid. Do not attempt the transform in these
circumstances.
llvm-svn: 252370
This marker prevents optimization passes from adding 'tail' or
'musttail' markers to a call. Is is used to prevent tail call
optimization from being performed on the call.
rdar://problem/22667622
Differential Revision: http://reviews.llvm.org/D12923
llvm-svn: 252368
We used to try to constant-fold them to i32 immediates.
Given that fast-isel doesn't otherwise support vNi1, when selecting
the result users, we'd fallback to SDAG anyway.
However, if the users were in another block, we'd insert broken
cross-class copies (GPR32 to FPR64).
Give up, let SDAG agree with itself on a vNi1 legalization strategy.
llvm-svn: 252364
When matching non-LSB-extracting truncating broadcasts, we now insert
the necessary SRL. If the scalar resulted from a load, the SRL will be
folded into it, creating a narrower, offset, load.
However, i16 loads aren't Desirable, so we get i16->i32 zextloads.
We already catch i16 aextloads; catch these as well.
llvm-svn: 252363
Now that we recognize this, we can support it instead of bailing out.
That is, we can fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc (srl Y, 16)))))
llvm-svn: 252362
We used to incorrectly assume that the offset we're extracting from
was a multiple of the element size. So, we'd fold:
(v8i16 (shufflevector
(v8i16 (bitcast (v4i32 (build_vector X, Y, ...)))),
<1,1,...,1>))
into:
(v8i16 (vbroadcast (i16 (trunc Y))))
whereas we should have extracted the higher bits from X.
Instead, bail out if the assumption doesn't hold.
llvm-svn: 252361
The SLPVectorizer had a very crude way of trying to benefit
from associativity: it tried to optimize for splat/broadcast
or in order to have the same operator on the same side.
This is benefitial to the cost model and allows more vectorization
to occur.
This patch improve the logic and make the detection optimal (locally,
we don't look at the full tree but only at the immediate children).
Should fix https://llvm.org/bugs/show_bug.cgi?id=25247
Reviewers: mzolotukhin
Differential Revision: http://reviews.llvm.org/D13996
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 252337
All 3 operands of FMA3 instructions are commutable now.
Patch by Slava Klochkov
Reviewers: Quentin Colombet(qcolombet), Ahmed Bougacha(ab).
Differential Revision: http://reviews.llvm.org/D13269
llvm-svn: 252335
Modelling of the expression stack is evolving. This patch takes another
step by making pushes explicit.
Differential Revision: http://reviews.llvm.org/D14338
llvm-svn: 252334
Summary:
Currently `isImpliedCondition` will optimize "I +_nuw C < L ==> I < L"
only if C is positive. This is an unnecessary restriction -- the
implication holds even if `C` is negative.
Reviewers: reames, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14369
llvm-svn: 252332
Summary:
This change adds a framework for adding more smarts to
`isImpliedCondition` around inequalities. Informally,
`isImpliedCondition` will now try to prove "A < B ==> C < D" by proving
"C <= A && B <= D", since then it follows "C <= A < B <= D".
While this change is in principle NFC, I could not think of a way to not
handle cases like "i +_nsw 1 < L ==> i < L +_nsw 1" (that ValueTracking
did not handle before) while keeping the change understandable. I've
added tests for these cases.
Reviewers: reames, majnemer, hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14368
llvm-svn: 252331
Mark kernels that use certain features that require user
SGPRs to support with kernel attributes. We need to know
before instruction selection begins because it impacts
the kernel calling convention lowering.
For now this only detects the workitem intrinsics.
llvm-svn: 252323
For some reason VS_32 ends up factoring into the pressure heuristics
even though we should never see a virtual register with this class.
When SGPRs are reserved for register spilling, this for some reason
triggers reg-crit scheduling.
Setting isAllocatable = 0 may help with this since that seems to remove
it from the default implementation's generated table.
llvm-svn: 252321
Summary:
This reverts commit r251965.
Restore "Move metadata linking after lazy global materialization/linking."
This restores commit r251926, with fixes for the LTO bootstrapping bot
failure.
The bot failure was caused by references from debug metadata to
otherwise unreferenced globals. Previously, this caused the lazy linking
to link in their defs, which is unnecessary. With this patch, because
lazy linking is complete when we encounter the metadata reference, the
materializer created a declaration. For definitions such as aliases and
comdats, it is illegal to have a declaration. Furthermore, metadata
linking should not change code generation. Therefore, when linking of
global value bodies is complete, the materializer will simply return
nullptr as the new reference for the linked metadata.
This change required fixing a different test to ensure there was a
real reference to a linkonce global that was only being reference from
metadata.
Note that the new changes to the only-needed-named-metadata.ll test
illustrate an issue with llvm-link -only-needed handling of comdat
groups, whereby it may result in an incomplete comdat group. I note this
in the test comments, but the issue is orthogonal to this patch (it can
be reproduced without any metadata at head).
Reviewers: dexonsmith, rafael, tra
Subscribers: tobiasvk, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D14447
llvm-svn: 252320
Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
llvm-svn: 252318
The benefit from converting narrow loads into a wider load (r251438) could be
micro-architecturally dependent, as it assumes that a single load with two bitfield
extracts is cheaper than two narrow loads. Currently, this conversion is
enabled only in cortex-a57 on which performance benefits were verified.
llvm-svn: 252316
We now create the .eh_frame section early, just like every other special
section.
This means that the special flags are visible in code that explicitly
asks for ".eh_frame".
llvm-svn: 252313
Summary:
The bug was that the sldi instructions have immediate widths dependant on
their element size. So sldi.d has a 1-bit immediate and sldi.b has a 4-bit
immediate. All of these were using 4-bit immediates previously.
Reviewers: vkalintiris
Subscribers: llvm-commits, atanasyan, dsanders
Differential Revision: http://reviews.llvm.org/D14018
llvm-svn: 252297
Summary:
The bug was that the MIPS32R6/MIPS64R6/microMIPS32R6 versions of LSA and DLSA
(unlike the MSA version) failed to account for the off-by-one encoding of the
immediate. The range is actually 1..4 rather than 0..3.
Reviewers: vkalintiris
Subscribers: atanasyan, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14015
llvm-svn: 252295
Summary:
Without these patterns we would generate a complete LL/SC sequence.
This would be problematic for memory regions marked as WRITE-only or
READ-only, as the instructions LL/SC would read/write to the protected
memory regions correspondingly.
Reviewers: dsanders
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14397
llvm-svn: 252293
This attribute allows the compiler to assume that the function never recurses into itself, either directly or indirectly (transitively). This can be used among other things to demote global variables to locals.
llvm-svn: 252282
Windows EH funclets need to always return to a single parent funclet. However, it is possible for earlier optimizations to combine funclets (probably based on one funclet having an unreachable terminator) in such a way that this condition is violated.
These changes add code to the WinEHPrepare pass to detect situations where a funclet has multiple parents and clone such funclets, fixing up the unwind and catch return edges so that each copy of the funclet returns to the correct parent funclet.
Differential Revision: http://reviews.llvm.org/D13274?id=39098
llvm-svn: 252249
Summary:
We frequently run bugpoint on a linked module that consists of all
modules we create while jitting the julia standard library. This module
has a very large number of compile units (10000+) in `llvm.dbg.cu`,
which didn't get reduced at all, requiring manual post processing.
This is an attempt to have bugpoint go through and attempt to reduce
the number of global named metadata nodes as well as their operands,
to cut down the number of roots for such metadata.
Reviewers: dexonsmith, reames, pete
Subscribers: pete, dexonsmith, reames, llvm-commits
Differential Revision: http://reviews.llvm.org/D14043
llvm-svn: 252247
The bug: I missed adding break statements in the switch / case.
Original commit message:
[SCEV] Teach SCEV some axioms about non-wrapping arithmetic
Summary:
- A s< (A + C)<nsw> if C > 0
- A s<= (A + C)<nsw> if C >= 0
- (A + C)<nsw> s< A if C < 0
- (A + C)<nsw> s<= A if C <= 0
Right now `C` needs to be a constant, but we can later generalize it to
be a non-constant if needed.
Reviewers: atrick, hfinkel, reames, nlewycky
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13686
llvm-svn: 252236
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
inalloca variables were not treated as static allocas, therefore didn't
participate in regular stack instrumentation. We don't want them to
participate in dynamic alloca instrumentation as well.
llvm-svn: 252213
We already had a test for this for 32-bit SEH catchpads, but those don't
actually create funclets. We had a bug that only appeared in funclet
prologues, where we would establish EBP and ESI as our FP and BP, and
then downstream prologue code would overwrite them.
While I was at it, I fixed Win64+funclets+stackrealign. This issue
doesn't come up as often there due to the ABI requring 16 byte stack
alignment, but now we can rest easy that AVX and WinEH will work well
together =P.
llvm-svn: 252210
The needed lld matching changes to be submitted immediately next,
but this revision will cause lld failures with this alone which is expected.
This removes the eating of the error in Archive::Child::getSize() when the characters
in the size field in the archive header for the member is not a number. To do this we
have all of the needed methods return ErrorOr to push them up until we get out of lib.
Then the tools and can handle the error in whatever way is appropriate for that tool.
So the solution is to plumb all the ErrorOr stuff through everything that touches archives.
This include its iterators as one can create an Archive object but the first or any other
Child object may fail to be created due to a bad size field in its header.
Thanks to Lang Hames on the changes making child_iterator contain an
ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add
operator overloading for * and -> .
We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash”
and using report_fatal_error() to move the error checking will cause the program to
stop, neither of which are really correct in library code. There are still some uses of
these that should be cleaned up in this library code for other than the size field.
The test cases use archives with text files so one can see the non-digit character,
in this case a ‘%’, in the size field.
These changes will require corresponding changes to the lld project. That will be
committed immediately after this change. But this revision will cause lld failures
with this alone which is expected.
llvm-svn: 252192