The MachO toolchain has an isTargetIOSBased method, but it isn't
virtual so it isn't very meaningful to call it. After thinking about
this, I guess that putting this logic in the MachO class is a bit of a
layering violation anyway. Do this more like how we handle
AddLinkRuntimeLibArgs instead.
llvm-svn: 237095
Compiler-rt's Profiling library isn't part of the stdlib, so -nostdlib
shouldn't prevent it from being linked. This makes Darwin behave like
other toolchains, and link in the profile runtime irrespective of
-nostdlib, since the resulting program can't be run unless you link
this.
I've also added a test to show that other toolchains already behave
like this.
llvm-svn: 237074
This is a starting point for using the TargetParser in Clang, in a simple
enough part of the code that can be used without disrupting the crazy
platform support that we need to be compatible with other toolchains.
Also adding a few FIXME on obvious places that need replacing, but those
cases will indeed break a few of the platform assumptions, as arch/cpu names
change multiple times in the driver.
Finally, I'm changing the "neon-vfpv3" behaviour to match standard NEON, since
-mfpu=neon implies vfpv3 by default in both Clang and LLVM. That option
string is still supported as an alias to "neon".
llvm-svn: 236901
GCC allows case-insensitive values for -mcpu, -march and -mtune options.
This patch implements the same behaviour for the -mcpu option.
Patch by Gabor Ballabas.
llvm-svn: 236859
This change is the third of 3 patches to add support for specifying
the profile output from the command line via -fprofile-instr-generate=<path>,
where the specified output path/file will be overridden by the
LLVM_PROFILE_FILE environment variable.
This patch adds the necessary support to the clang frontend, and adds a
new test.
The compiler-rt and llvm parts are r236055 and r236288, respectively.
Patch by Teresa Johnson. Thanks!
llvm-svn: 236289
Adds ARM Cortex-R4 and R4F support and tests in Clang. Though Cortex-R4
support was present, the support for hwdiv in thumb-mode was not defined
or tested properly. This has also been added.
llvm-svn: 234488
- Debian jessie will be released this month, add the next testing version to the list.
- RHEL7 was released last june.
- Ubuntu utopic was released last october, vivid will follow later this month.
llvm-svn: 234149
Summary:
Change the way we use ASan and UBSan together. Instead of keeping two
separate runtimes (libclang_rt.asan and libclang_rt.ubsan), embed UBSan
into ASan and get rid of libclang_rt.ubsan. If UBSan is not supported on
a platform, all UBSan sources are just compiled into dummy empty object
files. UBSan initialization code (e.g. flag parsing) is directly called
from ASan initialization, so we are able to enforce correct
initialization order.
This mirrors the approach we already use for ASan+LSan. This change doesn't
modify the way we use standalone UBSan.
Test Plan: regression test suite
Reviewers: kubabrecka, zaks.anna, kcc, rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8645
llvm-svn: 233860
Add Tool and ToolChain support for clang to target the NaCl OS using the NaCl
SDK for x86-32, x86-64 and ARM.
Includes nacltools::Assemble and Link which are derived from gnutools. They
are similar to Linux but different enought that they warrant their own class.
Also includes a NaCl_TC in ToolChains derived from Generic_ELF with library
and include paths suitable for an SDK and independent of the system tools.
Differential Revision: http://reviews.llvm.org/D8590
llvm-svn: 233594
Now that CloudABI's target information and header search logic for Clang
has been submitted, the only thing that remains to be done is adding
support for CloudABI's linker.
CloudABI uses Binutils ld, although there is some work to use lld
instead. This means that this code is largely based on what we use on
FreeBSD. There are some exceptions, however:
- Only static linking is performed. CloudABI does not support any
dynamically linked executables.
- CloudABI uses compiler-rt, libc++ and libc++abi unconditionally. Link
in these libraries instead of using libgcc_s, libstdc++, etc.
- We must ensure that the .eh_frame_hdr is present to make C++
exceptions work properly.
Differential Revision: http://reviews.llvm.org/D8250
llvm-svn: 233269
Summary:
UBSan is now used in the same way as ASan, and is supported on
OSX and on iOS simulator. At the moment ASan and UBSan can't be used
together due to PR21112, but I hope to resolve it soon by
embedding UBSan into ASan.
Test Plan: regression test suite.
Reviewers: zaks.anna, kubabrecka
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8471
llvm-svn: 233035
Now that SmallString is a first-class citizen, most SmallString::str()
calls are not required. This patch removes a whole bunch of them, yet
there are lots more.
There are two use cases where str() is really needed:
1) To use one of StringRef member functions which is not available in
SmallString.
2) To convert to std::string, as StringRef implicitly converts while
SmallString do not. We may wish to change this, but it may introduce
ambiguity.
llvm-svn: 232622
There is no supported toolchain which provides headers / libs / object
files specific to the mips32r[3|5] and mips64r[3|5] ISA. So select "r2"
specific folders when they are available.
http://reviews.llvm.org/D7879
llvm-svn: 230611
What's going on here is that the ternary operator produces a std::string rvalue
that the StringRef points to. I'd hoped bugs like this were a thing of the past
with our asan testing but apparently this code path is only used when LLVM is
configured with a custom --with-c-include-dirs setting.
Unbreaks bootstrapping with GCC5 on Fedora (PR22625), patch by Jonathan Wakely!
llvm-svn: 229719
Add some of the missing M and R class Cortex CPUs, namely:
Cortex-M0+ (called Cortex-M0plus for GCC compatibility)
Cortex-M1
SC000
SC300
Cortex-R5
llvm-svn: 229661
Summary:
This is a more robust way of figuring out implicit deployment target
from isysroot. It also handles iphone simulator target.
Reviewers: bob.wilson, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, cfe-commits
Differential Revision: http://reviews.llvm.org/D6939
llvm-svn: 226005
I added this check a while back but then made a note to myself that it
should be completely unnecessary since iOS always uses PIC code-gen for
aarch64. Since I could never come up with any reason why it would be
necessary, I'm just going to remove it and we'll see if anything breaks.
rdar://problem/13627985
llvm-svn: 223097
Revision 220571 removes the requirement to use -pie for tsan binaries. So remove -pie from driver.
Also s/hasZeroBaseShadow/requiresPIE/ because that is what it is used for. Msan does not have zero-based shadow, but requires pie. And in general the relation between zero-based shadow and pie is unclear.
http://reviews.llvm.org/D6318
llvm-svn: 222526
If clang was configured with a custom gcc toolchain (either by using GCC_INSTALL_PREFIX in cmake or the equivalent configure command), the path to the custom gcc toolchain path takes precedence to the one specified by -ccc-install-dir. This causes several regression tests to fail as they will be using an unexpected path. Adding the switch --gcc-toolchain="" in each test command is not enough as the hexagon toolchain implementation in the driver is not evaluating this argument. This commit modifies the hexagon toolchain to take the --gcc-toolchain="" argument into account when deciding the toolchain path, similarly to what is already done for other targets toolchains. Additionally, the faulty regression tests are modified in order to --gcc-toolchain="" be passed to the commands.
llvm-svn: 221535
This CPU definition is redundant. The Cortex-A9 is defined as
supporting multiprocessing extensions. Remove references to this CPU.
This CPU was recently removed from LLVM. See http://reviews.llvm.org/D6057
Change-Id: I62ae7cc656fcae54fbaefc4b6976e77e694a8678
llvm-svn: 221458
Change the LC_ID_DYLIB of ASan's dynamic libraries on OS X to be set to "@rpath/libclang_rt.asan_osx_dynamic.dylib" and similarly for iossim. Clang driver then sets the "-rpath" to be the real path to where clang currently has the dylib (because clang uses the relative path to its current executable). This means if you move the compiler or install the binary release, -fsanitize=address will link to the proper library.
Reviewed at http://reviews.llvm.org/D6018
llvm-svn: 221279
The former name doesn't make sense, we are using this parameter for both .a and .dylib libraries.
No functional change.
http://reviews.llvm.org/D6040
llvm-svn: 220939
We can safely rely on the architecture to distinguish iOS device builds from
iOS simulator builds. We already have code to do that, in fact. This simplifies
some of the error checking for the option handling.
llvm-svn: 219545
This was previously only used when explicitly requested with a command line
option because it had to work with some old versions of the linker when it
was first introduced. That is ancient history now, and it should be safe to
use the correct option even when using the IPHONEOS_DEPLOYMENT_TARGET
environment variable to specify that the target is the iOS simulator.
Besides updating the test for this, I also added a few more tests for the
iOS linker options.
llvm-svn: 219527
It turns out that this was never used. Instead we just use the
IPHONEOS_DEPLOYMENT_TARGET variable for both iOS devices and simulator.
rdar://problem/18596744
llvm-svn: 219467
The Cortex-M7 has 3 options for its FPU: none, FPv5-SP-D16 and
FPv5-DP-D16. FPv5 has the same instructions as FP-ARMv8, so it can be
modeled using the same target feature, and all double-precision
operations are already disabled by the fp-only-sp target features.
llvm-svn: 218748