memcpy to match the alignment of the destination. It isn't necessary
for making loads and stores handled like the SSE loadu/storeu
intrinsics, and it was causing a performance regression in
MultiSource/Applications/JM/lencod.
The problem appears to have been a memcpy that copies from some
highly aligned array into an alloca; the alloca was then being
assigned a large alignment, which required codegen to perform
dynamic stack-pointer re-alignment, which forced the enclosing
function to have a frame pointer, which led to increased spilling.
llvm-svn: 65289
as legality. Make load sinking and gep sinking more careful: we only
do it when it won't pessimize loads from the stack. This has the added
benefit of not producing code that is unanalyzable to SROA.
llvm-svn: 65209
Enhance instcombine to use the preferred field of
GetOrEnforceKnownAlignment in more cases, so that regular IR operations are
optimized in the same way that the intrinsics currently are.
llvm-svn: 64623
turn icmp eq a+x, b+x into icmp eq a, b if a+x or b+x has other uses. This
may have been increasing register pressure leading to the bzip2 slowdown.
llvm-svn: 63487
improvements to the EvaluateInDifferentType code. This code works
by just inserted a bunch of new code and then seeing if it is
useful. Instcombine is not allowed to do this: it can only insert
new code if it is useful, and only when it is converging to a more
canonical fixed point. Now that we iterate when DCE makes progress,
this causes an infinite loop when the code ends up not being used.
llvm-svn: 63483
simplifydemandedbits to simplify instructions with *multiple
uses* in contexts where it can get away with it. This allows
it to simplify the code in multi-use-or.ll into a single 'add
double'.
This change is particularly interesting because it will cover
up for some common codegen bugs with large integers created due
to the recent SROA patch. When working on fixing those bugs,
this should be disabled.
llvm-svn: 63481
Now, if it detects that "V" is the same as some other value,
SimplifyDemandedBits returns the new value instead of RAUW'ing it immediately.
This has two benefits:
1) simpler code in the recursive SimplifyDemandedBits routine.
2) it allows future fun stuff in instcombine where an operation has multiple
uses and can be simplified in one context, but not all.
#2 isn't implemented yet, this patch should have no functionality change.
llvm-svn: 63479
- Looking at the number of sign bits of the a sext instruction to determine whether new trunc + sext pair should be added when its source is being evaluated in a different type.
llvm-svn: 62263
canonicalization transform based on duncan's comments:
1) improve the comment about %.
2) within our index loop make sure the offset stays
within the *type size*, instead of within the *abi size*.
This allows us to reason explicitly about landing in tail
padding and means that issues like non-zero offsets into
[0 x foo] types don't occur anymore.
llvm-svn: 62045
constant. If X is a constant, then this is folded elsewhere.
- Added a note to Target/README.txt to indicate that we'd like to implement
this when we're able.
llvm-svn: 60399
Note that the FoldOpIntoPhi call is dead because it's impossible for the
first operand of a subtraction to be both a ConstantInt and a PHINode.
llvm-svn: 60306
"For signed integers, the determination of overflow of x*y is not so simple. If
x and y have the same sign, then overflow occurs iff xy > 2**31 - 1. If they
have opposite signs, then overflow occurs iff xy < -2**31."
In this case, x == -1.
llvm-svn: 60278
overflowed on negation. This commit checks to make sure that neithe C nor X
overflows. This requires that the RHS of X (a subtract instruction) be a
constant integer.
llvm-svn: 60275
g++ -m32 -c -g -DIN_GCC -W -Wall -Wwrite-strings -Wmissing-format-attribute -fno-common -mdynamic-no-pic -DHAVE_CONFIG_H -Wno-unused -DTARGET_NAME=\"i386-apple-darwin9.5.0\" -I. -I. -I../../llvm-gcc.src/gcc -I../../llvm-gcc.src/gcc/. -I../../llvm-gcc.src/gcc/../include -I./../intl -I../../llvm-gcc.src/gcc/../libcpp/include -I../../llvm-gcc.src/gcc/../libdecnumber -I../libdecnumber -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.obj/include -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/include -DENABLE_LLVM -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.obj/../llvm.src/include -D_DEBUG -D_GNU_SOURCE -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS -I. -I. -I../../llvm-gcc.src/gcc -I../../llvm-gcc.src/gcc/. -I../../llvm-gcc.src/gcc/../include -I./../intl -I../../llvm-gcc.src/gcc/../libcpp/include -I../../llvm-gcc.src/gcc/../libdecnumber -I../libdecnumber -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.obj/include -I/Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/include ../../llvm-gcc.src/gcc/llvm-types.cpp -o llvm-types.o
../../llvm-gcc.src/gcc/llvm-convert.cpp: In member function 'void TreeToLLVM::EmitMemCpy(llvm::Value*, llvm::Value*, llvm::Value*, unsigned int)':
../../llvm-gcc.src/gcc/llvm-convert.cpp:1496: error: 'memcpy_i32' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp:1496: error: 'memcpy_i64' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp: In member function 'void TreeToLLVM::EmitMemMove(llvm::Value*, llvm::Value*, llvm::Value*, unsigned int)':
../../llvm-gcc.src/gcc/llvm-convert.cpp:1512: error: 'memmove_i32' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp:1512: error: 'memmove_i64' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp: In member function 'void TreeToLLVM::EmitMemSet(llvm::Value*, llvm::Value*, llvm::Value*, unsigned int)':
../../llvm-gcc.src/gcc/llvm-convert.cpp:1528: error: 'memset_i32' is not a member of 'llvm::Intrinsic'
../../llvm-gcc.src/gcc/llvm-convert.cpp:1528: error: 'memset_i64' is not a member of 'llvm::Intrinsic'
make[3]: *** [llvm-convert.o] Error 1
make[3]: *** Waiting for unfinished jobs....
rm fsf-funding.pod gcov.pod gfdl.pod cpp.pod gpl.pod gcc.pod
make[2]: *** [all-stage1-gcc] Error 2
make[1]: *** [stage1-bubble] Error 2
make: *** [all] Error 2
llvm-svn: 59809
The previous patches didn't match correctly. Also, we need to make sure that
the conditional is the same before doing the transformation.
llvm-svn: 58978
original code was matching like this:
if (match(A, m_Not(m_Value(B))))
B was already matched as a 'select' instruction. However, this isn't matching
what we think it's matching. It would match B as a 'Value', so basically
anything would match to it. In this case, a Constant matched. B was replaced
with a constant representation. And then the wrong value would be used in the
SelectInst::Create statement, causing a crash.
After thinking on this for a moment, and after Nick L. told me how the pattern
matching stuff was supposed to work, the solution was to match NOT an m_Value,
but an m_Select.
llvm-svn: 58946
to generate signed ICMP instructions to replace the FCMP. This would violate
the following:
define i1 @test1(i32 %val) {
%1 = uitofp i32 %val to double
%2 = fcmp ole double %1, 0.000000e+00
ret i1 %2
}
would be transformed into:
define i1 @test1(i32 %val) {
%1 = icmp slt i33 %val, 1
ret i1 %1
}
which is obviously wrong. This patch modifes InstCombiner::FoldFCmp_IntToFP_Cst
to handle when the LHS comes from UIToFP.
llvm-svn: 58929
to find opportunities for store-to-load forwarding or load CSE,
in the same way that visitStore scans back to do DSE. Also, define
a new helper function for testing whether the addresses of two
memory accesses are known to have the same value, and use it in
both visitStore and visitLoad.
These two changes allow instcombine to eliminate loads in code
produced by front-ends that frequently emit obviously redundant
addressing for memory references.
llvm-svn: 57608
shifting and masking inside a bswap expr. This allows it to handle
the cases from PR2842, which involve the intermediate 'or'
expressions being shifted, not just the input value.
llvm-svn: 57095
pointer bitcasts and GEP's", and centralize the
logic in Value::getUnderlyingObject. The
difference with stripPointerCasts is that
stripPointerCasts only strips GEPs if all
indices are zero, while getUnderlyingObject
strips GEPs no matter what the indices are.
llvm-svn: 56922
- return attributes - inreg, zext and sext
- parameter attributes
- function attributes - nounwind, readonly, readnone, noreturn
Return attributes use 0 as the index.
Function attributes use ~0U as the index.
This patch requires corresponding changes in llvm-gcc and clang.
llvm-svn: 56704
s/ParamAttr/Attribute/g
s/PAList/AttrList/g
s/FnAttributeWithIndex/AttributeWithIndex/g
s/FnAttr/Attribute/g
This sets the stage
- to implement function notes as function attributes and
- to distinguish between function attributes and return value attributes.
This requires corresponding changes in llvm-gcc and clang.
llvm-svn: 56622
- Recognize expressions like "x > -1 ? x : 0" as min/max and turn them
into expressions like "x < 0 ? 0 : x", which is easily recognizable
as a min/max operation.
- Refrain from folding expression like "y/2 < 1" to "y < 2" when the
comparison is being used as part of a min or max idiom, like
"y/2 < 1 ? 1 : y/2". In that case, the division has another use, so
folding doesn't eliminate it, and obfuscates the min/max, making it
harder to recognize as a min/max operation.
These benefit ScalarEvolution, CodeGen, and anything else that wants to
recognize integer min and max.
llvm-svn: 56246
users, and teach it about shufflevector instructions.
Also, fix a subtle bug in SimplifyDemandedVectorElts'
insertelement code.
This is a patch that was originally written by Eli Friedman,
with some fixes and cleanup by me.
llvm-svn: 55995
do for scalars. Patch contributed by Nicolas Capens
This also generalizes the previous xforms to work on long double, now that
isExactlyValue works for long double.
llvm-svn: 54653
Remove the GetResultInst instruction. It is still accepted in LLVM assembly
and bitcode, where it is now auto-upgraded to ExtractValueInst. Also, remove
support for return instructions with multiple values. These are auto-upgraded
to use InsertValueInst instructions.
The IRBuilder still accepts multiple-value returns, and auto-upgrades them
to InsertValueInst instructions.
llvm-svn: 53941
the min/max values for an integer type, compare against the min/max
values we can prove contain the input. This might be a tighter bound,
so this is general goodness.
llvm-svn: 53446
was using the algorithm for folding unsigned comparisons which is
completely wrong. This has been broken since the signless types change.
llvm-svn: 53444
This cause a regression in InstCombine/JavaCompare, which was doing the right
thing on accident. To handle the missed case, generalize the comparisons based
on masked bits a little bit to handle comparisons against the max value. For
example, we can now xform (slt i32 (and X, 4), 4) -> (setne i32 (and X, 4), 4)
llvm-svn: 53443
into phis. This is actually the same bug as PR2262 /
2008-04-29-VolatileLoadDontMerge.ll, but I missed checking the first
predecessor for multiple successors. Testcase here:
InstCombine/2008-07-08-VolatileLoadMerge.ll
llvm-svn: 53240
Move GetConstantStringInfo to lib/Analysis. Remove
string output routine from Constant. Update all
callers. Change debug intrinsic api slightly to
accomodate move of routine, these now return values
instead of strings.
This unbreaks llvm-gcc bootstrap.
llvm-svn: 52884
string output routine from Constant. Update all
callers. Change debug intrinsic api slightly to
accomodate move of routine, these now return values
instead of strings.
llvm-svn: 52748
I'm at it, rename it to FindInsertedValue.
The only functional change is that newly created instructions are no longer
added to instcombine's worklist, but that is not really necessary anyway (and
I'll commit some improvements next that will completely remove the need).
llvm-svn: 52315
out of instcombine into a new file in libanalysis. This also teaches
ComputeNumSignBits about the number of sign bits in a constantint.
llvm-svn: 51863
the conditions for performing the transform when only the
function declaration is available: no longer allow turning
i32 into i64 for example. Only allow changing between
pointer types, and between pointer types and integers of
the same size. For return values ptr -> intptr was already
allowed; I added ptr -> ptr and intptr -> ptr while there.
As shown by a recent objc testcase, changing the way
parameters/return values are passed can be fatal when calling
code written in assembler that directly manipulates call
arguments and return values unless the transform has no
impact on the way they are passed at the codegen level.
While it is possible to imagine an ABI that treats integers
of pointer size differently to pointers, I don't think LLVM
supports any so the transform should now be safe while still
being useful.
llvm-svn: 51834
Analysis/ConstantFolding to fold ConstantExpr's, then make instcombine use it
to try to use targetdata to fold constant expressions on void instructions.
Also extend the icmp(inttoptr, inttoptr) folding to handle the case where
int size != ptr size.
llvm-svn: 51559
type and the other operand is a constant into integer comparisons.
This happens surprisingly frequently (e.g. 10 times in 471.omnetpp),
which are things like this:
%tmp8283 = sitofp i32 %tmp82 to double
%tmp1013 = fcmp ult double %tmp8283, 0.0
Clearly comparing tmp82 against i32 0 is cheaper here.
this also triggers 8 times in gobmk, including this one:
%tmp375376 = sitofp i32 %tmp375 to double
%tmp377 = fcmp ogt double %tmp375376, 8.150000e+01
which is comparing an integer against 81.5 :).
llvm-svn: 51268
intersecting bits. This triggers all over the place, for example in lencode,
with adds of stuff like:
%tmp580 = mul i32 %tmp579, 2
%tmp582 = and i32 %b8, 1
and
%tmp28 = shl i32 %abs.i, 1
%sign.0 = select i1 %tmp23, i32 1, i32 0
and
%tmp344 = shl i32 %tmp343, 2
%tmp346 = and i32 %tmp96, 3
etc.
llvm-svn: 51263
is bitcast to return a floating point value. The result of the instruction may
not be used by the program afterwards, and LLVM will happily remove all
instructions except the call. But, on some platforms, if a value is returned as
a floating point, it may need to be removed from the stack (like x87). Thus, we
can't get rid of the bitcast even if there isn't a use of the value.
llvm-svn: 51134
ComputeMaskedBits knows about cttz, ctlz, and ctpop. Teach
SelectionDAG's ComputeMaskedBits what InstCombine's knows
about SRem. And teach them both some things about high bits
in Mul, UDiv, URem, and Sub. This allows instcombine and
dagcombine to eliminate sign-extension operations in
several new cases.
llvm-svn: 50358
getelementptr-seteq.ll into:
define i1 @test(i64 %X, %S* %P) {
%C = icmp eq i64 %X, -1 ; <i1> [#uses=1]
ret i1 %C
}
instead of:
define i1 @test(i64 %X, %S* %P) {
%A.idx.mask = and i64 %X, 4611686018427387903 ; <i64> [#uses=1]
%C = icmp eq i64 %A.idx.mask, 4611686018427387903 ; <i1> [#uses=1]
ret i1 %C
}
And fixes the second half of PR2235. This speeds up the insertion sort
case by 45%, from 1.12s to 0.77s. In practice, this will significantly
speed up for loops structured like:
for (double *P = Base + N; P != Base; --P)
...
Which happens frequently for C++ iterators.
llvm-svn: 50079
in addition to integer expressions. Rewrite GetOrEnforceKnownAlignment
as a ComputeMaskedBits problem, moving all of its special alignment
knowledge to ComputeMaskedBits as low-zero-bits knowledge.
Also, teach ComputeMaskedBits a few basic things about Mul and PHI
instructions.
This improves ComputeMaskedBits-based simplifications in a few cases,
but more noticeably it significantly improves instcombine's alignment
detection for loads, stores, and memory intrinsics.
llvm-svn: 49492
the type instead of the byte size. This was causing troublesome mis-compilations.
True to form, this took 2 days to find and is a one-line fix. :-P
llvm-svn: 48354
1. There is now a "PAListPtr" class, which is a smart pointer around
the underlying uniqued parameter attribute list object, and manages
its refcount. It is now impossible to mess up the refcount.
2. PAListPtr is now the main interface to the underlying object, and
the underlying object is now completely opaque.
3. Implementation details like SmallVector and FoldingSet are now no
longer part of the interface.
4. You can create a PAListPtr with an arbitrary sequence of
ParamAttrsWithIndex's, no need to make a SmallVector of a specific
size (you can just use an array or scalar or vector if you wish).
5. All the client code that had to check for a null pointer before
dereferencing the pointer is simplified to just access the
PAListPtr directly.
6. The interfaces for adding attrs to a list and removing them is a
bit simpler.
Phase #2 will rename some stuff (e.g. PAListPtr) and do other less
invasive changes.
llvm-svn: 48289
was incorrectly simplifying "x == (gep x, 1, i)" into false, even
though i could be negative. As it turns out, all the code to
handle this already existed, we just need to disable the incorrect
optimization case and let the general case handle it.
llvm-svn: 46739
drop attributes on varargs call arguments. Also, it could generate
invalid IR if the transformed call already had the 'nest' attribute
somewhere (this can never happen for code coming from llvm-gcc,
but it's a theoretical possibility). Fix both problems.
llvm-svn: 45973
a load/store of i64. The later prevents promotion/scalarrepl of the
source and dest in many cases.
This fixes the 300% performance regression of the byval stuff on
stepanov_v1p2.
llvm-svn: 45945