This carves out an exception for a pair of consecutive loads that are
reversed from the consecutive order of a pair of stores. All of the
existing profitability/legality checks for the memops remain between
the 2 altered hunks of code.
This should give us the same x86 base-case asm that gcc gets in
PR41098 and PR44895:
http://bugs.llvm.org/PR41098http://bugs.llvm.org/PR44895
I think we are missing a potential subsequent conversion to use "movbe"
if the target supports that. That might be similar to what AArch64
would use to get "rev16".
Differential Revision: https://reviews.llvm.org/D83567
This carves out an exception for a pair of consecutive loads that are
reversed from the consecutive order of a pair of stores. All of the
existing profitability/legality checks for the memops remain between
the 2 altered hunks of code.
This should give us the same x86 base-case asm that gcc gets in
PR41098 and PR44895:i
http://bugs.llvm.org/PR41098http://bugs.llvm.org/PR44895
I think we are missing a potential subsequent conversion to use "movbe"
if the target supports that. That might be similar to what AArch64
would use to get "rev16".
Differential Revision:
Summary:
Helper used when splitting load & store operations to calculate
the pointer + offset for the high half of the split
Reviewers: efriedma, sdesmalen, david-arm
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83577
fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
This is only allowed when "reassoc" is present on the fadd.
As discussed in D80801, this transform goes beyond
what is allowed by "contract" FMF (-ffp-contract=fast).
That is because we are fusing the trailing add of 'E' with a
multiply, but without "reassoc", the code mandates that the
products A*B and C*D are added together before adding in 'E'.
I've added this example to the LangRef to try to clarify the
meaning of "contract". If that seems reasonable, we should
probably do something similar for the clang docs because
there does not appear to be any formal spec for the behavior
of -ffp-contract=fast.
Differential Revision: https://reviews.llvm.org/D82499
In DAGTypeLegalizer::SetSplitVector I have changed calls in the assert
from getVectorNumElements() to getVectorElementCount(), since this
code path works for both fixed and scalable vectors.
This fixes up one warning in the test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83196
This patch replaces some invalid calls to getVectorNumElements() with calls
to getVectorMinNumElements() instead, since the code paths changed in this
patch work for both fixed and scalable vector types.
Fixes warnings in this test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83203
Summary:
When legalizing a biscast operation from an fp16 operand to an i16 on a
target that requires both input and output types to be promoted to
32-bits, an assertion can fail when building the new node due to a
mismatch between the the operation's result size and the type specified to
the node.
This patches fix the issue by making sure the bit width of the types
match for the FP_TO_FP16 node, covering the difference with an extra
ANYEXTEND operation.
Reviewers: ostannard, efriedma, pirama, jmolloy, plotfi
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82552
This should be a typo introduced in D69275, which may cause an unknown
segment fault in getNode.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D83376
9cac4e6d1403554b06ec2fc9d834087b1234b695/D32628 intended to eliminate
this, and move all isel pseudo expansion to FinalizeISel. This was a
bad rebase or something, and failed to actually delete this call.
GlobalISel also has a redundant call of finalizeLowering. However, it
requires more work to remove it since it currently triggers a lot of
verifier errors in tests.
It looks like 9cac4e6d14 accidentally
added a second copy of this from a bad rebase or something. This
second copy was added, and the finalizeLowering call was not deleted
as intended.
This removes existing code duplication and allows us to
assert that we are handling the expected cases.
We have a list of outstanding bugs that could benefit by
handling truncated source values, so that's a possible
addition going forward.
ExpandVectorBuildThroughStack is also used for CONCAT_VECTORS.
However, when calculating the offsets for each of the operands we
incorrectly use the element size rather than actual size and thus
the stores overlap.
Differential Revision: https://reviews.llvm.org/D83303
Summary:
The following combine currently breaks in the DAGCombiner:
```
extract_vector_elt (concat_vectors v4i16:a, v4i16:b), x
-> extract_vector_elt a, x
```
This happens because after we have combined these nodes we have inserted nodes
that use individual instances of the vector element type. In the above example
i16. However this isn't a legal type on all backends, and when the combining pass calls
the legalizer it breaks as it expects types to already be legal. The type legalizer has
already been run, and running it again would make a mess of the nodes.
In the example code at least, the generated code is still efficient after the change.
Reviewers: miyuki, arsenm, dmgreen, lebedev.ri
Reviewed By: miyuki, lebedev.ri
Subscribers: lebedev.ri, wdng, hiraditya, steven.zhang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83231
In DAGTypeLegalizer::SplitVecRes_ExtendOp I have replaced an invalid
call to getVectorNumElements() with a call to getVectorMinNumElements(),
since the code path works for both fixed and scalable vectors.
This fixes up a warning in the following test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83197
Calling getVectorNumElements() is not safe for scalable vectors and we
should normally use getVectorElementCount() instead. However, for the
code changed in this patch I decided to simply move the instantiation of
the variable 'OutNumElems' lower down to the place where only fixed-width
vectors are used, and hence it is safe to call getVectorNumElements().
Fixes up one warning in this test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83195
`__stack_chk_fail` does not return, but `unreachable` was not generated
following `call __stack_chk_fail`. This had a possibility to generate an
invalid binary for functions with a return type, because
`__stack_chk_fail`'s return type is void and `call __stack_chk_fail` can
be the last instruction in the function whose return type is non-void.
Generating `unreachable` after it makes sure CFGStackify's
`fixEndsAtEndOfFunction` handles it correctly.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D83277
This is inspired by D81648. The basic idea is to have the set of SDValues which are lowered as either constants or direct frame references explicit in one place, and to separate them clearly from the spilling logic.
This is not NFC in that the handling of constants larger than > 64 bit has changed. The old lowering would crash on values which could not be encoded as a sign extended 64 bit value. The new lowering just spills all constants > 64 bits. We could be consistent about doing the sext(Con64) optimization, but I happen to know that this code path is utterly unexercised in practice, so simple is better for now.
Summary:
When splitting a store of a scalable type, the new address is
calculated in SplitVecOp_STORE using a vscale and an add instruction.
Reviewers: sdesmalen, efriedma, david-arm
Reviewed By: david-arm
Subscribers: tschuett, hiraditya, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83041
Summary:
When splitting a load of a scalable type, the new address is
calculated in SplitVecRes_LOAD using a vscale and an add instruction.
This patch also adds a DAG combiner fold to visitADD for vscale:
- Fold (add (vscale(C0)), (vscale(C1))) to (add (vscale(C0 + C1)))
Reviewers: sdesmalen, efriedma, david-arm
Reviewed By: david-arm
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82792
This patch fixes all remaining warnings in:
llvm/test/CodeGen/AArch64/sve-trunc.ll
llvm/test/CodeGen/AArch64/sve-vector-splat.ll
I hit some warnings related to getCopyPartsToVector. I fixed two
issues:
1. In widenVectorToPartType() we assumed that we'd always be
using BUILD_VECTOR nodes to expand from one vector type to another,
which is incorrect for scalable vector types. I've fixed this for now
by simply bailing out immediately for scalable vectors.
2. In getCopyToPartsVector() I've changed the code to compare
the element counts of different types.
Differential Revision: https://reviews.llvm.org/D83028
X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
In the motivating case from PR46406:
https://bugs.llvm.org/show_bug.cgi?id=46406
...this is restoring the sequence that was originally in the source code.
We extracted a term from within the sqrt because we do not know in
instcombine whether a target will expand a sqrt call.
Note: we could say that the transform in IR should be restricted, but
that would not solve the problem if the source was originally in the
pattern shown here.
This is a gray area for fast-math-flag requirements. I think we should at
least check fast-math-flags on the fdiv and fmul because I view this
transform as 2 pieces: reassociate the fmul operands and form reciprocal
from the fdiv (as with the existing transform). We could argue that the
sqrt also needs FMF, but that was not required before, so we should change
that in a follow-up patch if that seems better.
We don't currently have a way to check that the target will produce a sqrt
or recip estimate without actually creating nodes (the APIs are SDValue
getSqrtEstimate() and SDValue getRecipEstimate()), so we clean up
speculatively created nodes if we are not able to create an estimate.
The x86 test with doubles verifies that we are not changing a test with
no estimate sequence.
Differential Revision: https://reviews.llvm.org/D82716
Use a simpler code sequence when the shift amount is known not to be
zero modulo the bit width.
Nothing much uses this until D77152 changes the translation of fshl and
fshr intrinsics.
Differential Revision: https://reviews.llvm.org/D82540
Using a negation instead of a subtraction from a constant can save an
instruction on some targets.
Nothing much uses this until D77152 changes the translation of fshl and
fshr intrinsics.
Differential Revision: https://reviews.llvm.org/D82539
We need to ensure that the sign bits of the result all match
so we can't fold to undef.
Similar to PR46585.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D83163
zext_vector_inreg needs to produces 0s in the extended bits and
sext_vector_inreg needs to produce upper bits that are all the
same. So we should fold them to a 0 vector instead of undef.
Fixes PR46585.
Currently matchBinOpReduction only handles shufflevector reduction patterns, but in many cases these only occur in the final stages of a reduction, once we're down to legal vector widths.
Before this its likely that we are performing reductions using subvector extractions to repeatedly split the source vector in half and perform the binop on the halves.
Assuming we've found a non-partial reduction, this patch continues looking for subvector reductions as far as it can beyond the last shufflevector.
Fixes PR37890
SelectionDAGBuilder converts logic-of-compares into multiple branches based
on a boolean TLI setting in isJumpExpensive(). But that probably never
considered the pattern of extracted bools from a vector compare - it seems
unlikely that we would want to turn vector logic into control-flow.
The motivating x86 reduction case is shown in PR44565:
https://bugs.llvm.org/show_bug.cgi?id=44565
...and that test shows the expected improvement from using pmovmsk codegen.
For AArch64, I modified the test to include an extra op because the simpler
test gets transformed by a codegen invocation of SimplifyCFG.
Differential Revision: https://reviews.llvm.org/D82602
There was a rogue 'assert' in AArch64ISelLowering for the tuple.get intrinsics,
that shouldn't really have been there (I suspect this was a remnant from when
we expected the wider vector always to have come from a vector CONCAT).
When I tried to create a more minimal reproducer, I found a bug in
DAGCombiner where it drops the scalable flag when trying to fold:
extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
This patch fixes both issues.
Reviewers: david-arm, efriedma, spatel
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82910
Whilst trying to assemble the following test:
clang/test/CodeGen/aarch64-sve-intrinsics/acle_sve_set2.c
I discovered we were hitting some warnings about possible invalid
calls to getVectorNumElements() in getCopyToPartsVector(). I've
tried to fix these by using ElementCount types where possible and
I've made the assumption that we don't support using a fixed width
vector to copy parts of a scalable vector, and vice versa. Looking
at how the copy is implemented I think that's the right thing for
now.
Differential Revision: https://reviews.llvm.org/D82744
The caller can't handle the node having multiple results like a
masked load does. So we need to detect the case and do our own
result replacement.
Fixes PR46532.
In visitSCALAR_TO_VECTOR we try to optimise cases such as:
scalar_to_vector (extract_vector_elt %x)
into vector shuffles of %x. However, it led to numerous warnings
when %x is a scalable vector type, so for now I've changed the
code to only perform the combination on fixed length vectors.
Although we probably could change the code to work with scalable
vectors in certain cases, without a proper profit analysis it
doesn't seem worth it at the moment.
This change fixes up one of the warnings in:
llvm/test/CodeGen/AArch64/sve-merging-stores.ll
I've also added a simplified version of the same test to:
llvm/test/CodeGen/AArch64/sve-fp.ll
which already has checks for no warnings.
Differential Revision: https://reviews.llvm.org/D82872
Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.
Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.
Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D79794
As per documentation of `hasPairLoad`:
"`RequiredAlignment` gives the minimal alignment constraints that must be met to be able to select this paired load."
In this sense, `0` is strictly equivalent to `1`. We make this obvious by using `Align` instead of unsigned.
There is only one implementor of this interface.
Differential Revision: https://reviews.llvm.org/D82958
It's perfectly valid to do certain DAG combines where we extract
subvectors from a concat vector when we have scalable vector types.
However, we can do this in a way that avoids generating compiler
warnings by replacing calls to getVectorNumElements() with
getVectorMinNumElements(). Due to the way subvector extracts are
designed to work with scalable vector types this is ok.
This eliminates some warnings from existing tests in this file:
llvm/test/CodeGen/AArch64/sve-intrinsics-loads.ll
Differential Revision: https://reviews.llvm.org/D82655
Fix a warning in getNode() when extracting a subvector from a
concat vector. We can simply replace the call to getVectorNumElements
with getVectorMinNumElements as this follows the defined behaviour
for EXTRACT_SUBVECTOR.
Differential Revision: https://reviews.llvm.org/D82746
When trying to reduce a BUILD_VECTOR to a SHUFFLE_VECTOR it's
important that we carefully check the vector types that led to
that BUILD_VECTOR. In the test I have attached to this commit
there is a case where the results of two SVE faddv instructions
are being stored to consecutive memory locations. With my fix,
as part of merging those stores we discover that each BUILD_VECTOR
element came from an extract of a SVE vector element and
therefore bail out.
Differential Revision: https://reviews.llvm.org/D82564
If a constant is only allsignbits in the demanded/active bits, then sign extend it to an allsignbits bool pattern for OR/XOR ops.
This also requires SimplifyDemandedBits XOR handling to be modified to call ShrinkDemandedConstant on any (non-NOT) XOR pattern to account for non-splat cases.
Next step towards fixing PR45808 - with this patch we now get a <-1,-1,0,0> v4i64 constant instead of <1,1,0,0>.
Differential Revision: https://reviews.llvm.org/D82257
Pre-commit for D82257, this adds a DemandedElts arg to ShrinkDemandedConstant/targetShrinkDemandedConstant which will allow future patches to (optionally) add vector support.
reduceBuildVecExtToExtBuildVec was breaking a splat(zext(x)) pattern into buildvector(x, 0, x, 0, ..) resulting in much more complex insert+shuffle codegen.
We already go to some lengths to avoid this in SimplifyDemandedVectorElts etc. when we encounter splat buildvectors.
It should be OK to fold all splat(aext(x)) patterns - we might need to tighten this if we find a case where we mustn't introduce a buildvector(x, undef, x, undef, ..) but I can't find one.
Fixes PR46461.
This lowers intrinsic @llvm.get.active.lane.mask to a setcc node, i.e. an icmp
ule, and creates vectors for its 2 arguments on which the comparison is
performed.
Differential Revision: https://reviews.llvm.org/D82292
Implement them on top of sdiv/udiv, similar to what we do for integer
types.
Potential future work: implementing i8/i16 srem/urem, optimizations for
constant divisors, optimizing the mul+sub to mls.
Differential Revision: https://reviews.llvm.org/D81511
Summary:
This patch adds base support for code generating fixed length
vector operations targeting a known SVE vector length. To achieve
this we lower fixed length vector operations to equivalent scalable
vector operations, whereby SVE predication is used to limit the
elements processed to those present within the fixed length vector.
Specifically this patch implements load and store operations, which
get lowered to their masked counterparts thusly:
V = load(Addr) =>
V = extract_fixed_vector(masked_load(make_pred(V.NumElts), Addr))
store(V, (Addr)) =>
masked_store(insert_fixed_vector(V), make_pred(V.NumElts), Addr))
Reviewers: rengolin, efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80385
Summary:
- AssertAlign node records the guaranteed alignment on its source node,
where these alignments are retrieved from alignment attributes in LLVM
IR. These tracked alignments could help DAG combining and lowering
generating efficient code.
- In this patch, the basic support of AssertAlign node is added. So far,
we only generate AssertAlign nodes on return values from intrinsic
calls.
- Addressing selection in AMDGPU is revised accordingly to capture the
new (base + offset) patterns.
Reviewers: arsenm, bogner
Subscribers: jvesely, wdng, nhaehnle, tpr, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81711
We have many cases where we call SimplifyMultipleUseDemandedBits and demand specific vector elements, but all the bits from them - this adds a helper wrapper to handle this.
For little endian targets, if we only need the lowest element and none of the extended bits then we can just use the (bitcasted) source vector directly.
We already do this in SimplifyDemandedBits, this adds the SimplifyMultipleUseDemandedBits equivalent.
For now I have changed SimplifyDemandedBits and it's various callers
to assume we know nothing for scalable vectors and to ignore the
demanded bits completely. I have also done something similar for
SimplifyDemandedVectorElts. These changes fix up lots of warnings
due to calls to EVT::getVectorNumElements() for types with scalable
vectors. These functions are all used for optimisations, rather than
functional requirements. In future we can revisit this code if
there is a need to improve code quality for SVE.
Differential Revision: https://reviews.llvm.org/D80537
When trying to calculate the number of sign bits for scalable vectors
we should just bail out for now and pretend we know nothing.
Differential Revision: https://reviews.llvm.org/D81093
Summary:
Half-precision floating point arguments and returns are currently
promoted to either float or int32 in clang's CodeGen and there's
no existing support for the lowering of `half` arguments and returns
from IR in AArch32's backend.
Such frontend coercions, implemented as coercion through memory
in clang, can cause a series of issues in argument lowering, as causing
arguments to be stored on the wrong bits on big-endian architectures
and incurring in missing overflow detections in the return of certain
functions.
This patch introduces the handling of half-precision arguments and returns in
the backend using the actual "half" type on the IR. Using the "half"
type the backend is able to properly enforce the AAPCS' directions for
those arguments, making sure they are stored on the proper bits of the
registers and performing the necessary floating point convertions.
Reviewers: rjmccall, olista01, asl, efriedma, ostannard, SjoerdMeijer
Reviewed By: ostannard
Subscribers: stuij, hiraditya, dmgreen, llvm-commits, chill, dnsampaio, danielkiss, kristof.beyls, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75169
Instead of asserting the number of elements is the same, we should be
comparing the element counts instead. In addition, when looking at
concats of extract_subvectors it's fine to use getVectorMinNumElements()
for scalable vectors.
I discovered these warnings when compiling the structured loads tests in
this file:
test/CodeGen/AArch64/sve-intrinsics-loads.ll
Differential Revision: https://reviews.llvm.org/D81936
Current implementation of division estimation isn't correct for some
cases like 1.0/0.0 (result is nan, not expected inf).
And this change exposes a potential infinite loop: we use
isConstOrConstSplatFP in combineRepeatedFPDivisors to look up if the
divisor is some constant. But it doesn't work after legalized on some
platforms. This patch restricts the method to act before LegalDAG.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D80542
Until we have a real need for computing known bits for scalable
vectors I have simply changed the code to bail out for now and
pretend we know nothing. I've also fixed up some simple callers of
computeKnownBits too.
Differential Revision: https://reviews.llvm.org/D80437
If fmul and fadd are separated by an fma, we can fold them together
to save an instruction:
fadd (fma A, B, (fmul C, D)), N1 --> fma(A, B, fma(C, D, N1))
The fold implemented here is actually a specialization - we should
be able to peek through >1 fma to find this pattern. That's another
patch if we want to try that enhancement though.
This transform was guarded by the TLI hook enableAggressiveFMAFusion(),
so it was done for some in-tree targets like PowerPC, but not AArch64
or x86. The hook is protecting against forming a potentially more
expensive computation when fma takes longer to execute than a single
fadd. That hook may be needed for other transforms, but in this case,
we are replacing fmul+fadd with fma, and the fma should never take
longer than the 2 individual instructions.
'contract' FMF is all we need to allow this transform. That flag
corresponds to -ffp-contract=fast in Clang, so we are allowed to form
fma ops freely across expressions.
Differential Revision: https://reviews.llvm.org/D80801
Summary:
The naked function attribute is meant to suppress all function
prologue/epilogue instructions.
On ARM, some are still emitted if an argument greater than 64 bytes in size
(the threshold for using the byval attribute in IR) is passed partially
in registers.
Perform the check for Attribute::Naked and early exit in
SelectionDAGISel::LowerArguments().
Checking in ARMFrameLowering::determineCalleeSaves() is too late.
A test case is included.
Reviewers: llvm-commits, olista01, danielkiss
Reviewed By: danielkiss
Subscribers: kristof.beyls, hiraditya, danielkiss
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80715
Change-Id: Icedecf2a4ad31bc3c35ab0df7489a9d346e1f7cc
Summary:
Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::allowsMemoryAccess` without marking it override.
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81379
In two instances of CreateStackTemporary we are sometimes promoting
alignments beyond the stack alignment. I have introduced a new function
called getReducedAlign that will return the alignment for the broken
down parts of illegal vector types. For example, on NEON a <32 x i8>
type is made up of two <16 x i8> types - in this case the sensible
alignment is 16 bytes, not 32.
In the legalization code wherever we create stack temporaries I have
started using the reduced alignments instead for illegal vector types.
I added a test to
CodeGen/AArch64/build-one-lane.ll
that tries to insert an element into an illegal fixed vector type
that involves creating a temporary stack object.
Differential Revision: https://reviews.llvm.org/D80370
Just computing the alignment makes sense without caring about the
general known bits, such as for non-integral pointers. Separate the
two and start calling into the TargetLowering hooks for frame indexes.
Start calling the TargetLowering implementation for FrameIndexes,
which improves the AMDGPU matching for stack addressing modes. Also
introduce a new hook for returning known alignment of target
instructions. For AMDGPU, it would be useful to report the known
alignment implied by certain intrinsic calls.
Also stop using MaybeAlign.
This patch updates TargetLoweringBase::computeRegisterProperties and
TargetLoweringBase::getTypeConversion to support scalable vectors,
and make the right calls on how to legalise them. These changes are required
to legalise both MVTs and EVTs.
Reviewers: efriedma, david-arm, ctetreau
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80640
Summary:
This patch adds legalisation of extensions where the operand
of the extend is a legal scalable type but the result is not.
EXTRACT_SUBVECTOR is used to split the result, before
being replaced by target-specific [S|U]UNPK[HI|LO] operations.
For example:
```
zext <vscale x 16 x i8> %a to <vscale x 16 x i16>
```
should emit:
```
uunpklo z2.h, z0.b
uunpkhi z1.h, z0.b
```
Reviewers: sdesmalen, efriedma, david-arm
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, huihuiz, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79587
This wasn't getting much value from the DAG or depth arguments, since
it's only called on the frame index root nodes. FrameIndexes can also
only return a scalar value, so it also didn't need DemandedElts.
D79003/rG9fa58d1bf2f8 exposed an issue with scalarizeBinOpOfSplats that we were extracting from the splatted vector result instead of the source, the splat index is only valid for the source vector not the result, which may contain undefs, including at the splat index.
This reverts commit 21dadd774f.
In at least PromoteIntBinOps, they wanted to know about users of *all* values
produced by the node not just the integer being promoted. For example not
replacing chain users if the operation was a load breaks the ordering of the
DAG.
Summary:
This patch adds support for dumping .dot
representation of SelectionDAG. It is inspired from the fact that,
a developer may want to just dump the graph at
a predictable path with a simple name to compare.
The exisitng utility (i.e. viewGraph) are overkill
for this motive hence this patch adds the requires support
while using the core routines from GraphWriter.
Example usage: DAG.dumpDotGraph("/tmp/graph.dot", "MyGraph")
will create /tmp/graph.dot file when DAG is an
object of SelectionDAG class.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D80711
To do so, I had to sink the old school inline operand handling into GCStatepointInst which is non ideal. This code should be removed shortly and I was able to at least clean it up a bunch.
If we're only demanding the (shifted) sign bits of the shift source value, then we can use the value directly.
This handles SimplifyDemandedBits/SimplifyMultipleUseDemandedBits for both ISD::SHL and X86ISD::VSHLI.
Differential Revision: https://reviews.llvm.org/D80869
This patch implements a target independent DAG combine to produce multiply-high
instructions from shifts. This DAG combine will combine shifts for any type as
long as the MULH on the narrow type is legal.
For now, it is enabled on PowerPC as PowerPC is the only target that has an
implementation of the isMulhCheaperThanMulShift TLI hook introduced in
D78271.
Moreover, this DAG combine focuses on catching the pattern:
(shift (mul (ext <narrow_type>:$a to <wide_type>), (ext <narrow_type>:$b to <wide_type>)), <narrow_width>)
to produce mulhs when we have a sign-extend, and mulhu when we have
a zero-extend.
The patch performs the following checks:
- Operation is a right shift arithmetic (sra) or logical (srl)
- Input to the shift is a multiply
- Both operands to the shift are sext/zext nodes
- The extends into the multiply are both the same
- The narrow type is half the width of the wide type
- The shift amount is the width of the narrow type
- The respective mulh operation is legal
Differential Revision: https://reviews.llvm.org/D78272
Do not spill UNDEF GC values. Instead, replace corresponding
gc.relocate intrinsic with an (arbitrary, but recognizable) constant.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D80714
The AMDGPU non-strict fdiv lowering needs to introduce an FP mode
switch in some cases, and has custom nodes to provide chain/glue for
the intermediate FP operations. We need to propagate nofpexcept here,
but getNode was dropping the flags.
Adding nofpexcept in the AMDGPU custom lowering is left to a future
patch.
Also fix a second case where flags were dropped, but in this case it
seems it just didn't handle this number of operands.
Test will be included in future AMDGPU patch.
In some cases ScheduleDAGRRList has to add new nodes to resolve problems
with interfering physical registers. When new nodes are added, it
completely re-computes the topological order, which can take a long
time, but is unnecessary. We only add nodes one by one, and initially
they do not have any predecessors. So we can just insert them at the end
of the vector. Later we add predecessors, but the helper function
properly updates the topological order much more efficiently. With this
change, the compile time for the program below drops from 300s to 30s on
my machine.
define i11129 @test1() {
%L1 = load i11129, i11129* undef
%B30 = ashr i11129 %L1, %L1
store i11129 %B30, i11129* undef
ret i11129 %L1
}
This should be generally beneficial, as we can skip a large amount of
work. Theoretically there are some scenarios where we might not safe
much, e.g. when we add a dependency between the first and last node.
Then we would have to shift all nodes. But we still do not have to spend
the time re-computing the initial order.
Reviewers: MatzeB, atrick, efriedma, niravd, paquette
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D59722
This code was repeated in two callers of CommitTargetLoweringOpt.
But CommitTargetLoweringOpt is also called from TargetLowering.
We should print a message for those calls to. So sink the
repeated code into CommitTargetLoweringOpt to catch those calls.
We are calling getValidShiftAmountConstant first followed by getValidMinimumShiftAmountConstant/getValidMaximumShiftAmountConstant if that failed. But both are used in the same way in ComputeNumSignBits and the Min/Max variants call getValidShiftAmountConstant internally anyhow.
Summary:
This caused incorrect debug information for parameters:
Previously, after a COPY of a parameter that changes the width,
we would emit a DBG_VALUE that continues to be associated to that
parameter, even though it now used a different width.
This made the LiveDebugValues pass assume the parameter value
got clobbered and it stopped tracking the parameter entry
value, leading to incorrect debug information.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39715
Subscribers: aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80819
Let the codegen recognized the nomerge attribute and disable branch folding when the attribute is given
Differential Revision: https://reviews.llvm.org/D79537
optimizations
As discussed in the thread http://lists.llvm.org/pipermail/llvm-dev/2020-May/141838.html,
some bit field access width can be reduced by ReduceLoadOpStoreWidth, some
can't. If two accesses are very close, and the first access width is reduced,
the second is not. Then the wide load of second access will be stalled for long
time.
This patch add command line options to guard ReduceLoadOpStoreWidth and
ShrinkLoadReplaceStoreWithStore, so users can use them to disable these
store width reduction optimizations.
Differential Revision: https://reviews.llvm.org/D80745
Currently combineInsertEltToShuffle turns insert_vector_elt into a
vector_shuffle, even if the inserted element is a vector with a single
element. In this case, it should be unlikely that the additional shuffle
would be more efficient than a insert_vector_elt.
Additionally, this fixes a infinite cycle in DAGCombine, where
combineInsertEltToShuffle turns a insert_vector_elt into a shuffle,
which gets turned back into a insert_vector_elt/extract_vector_elt by
a custom AArch64 lowering (in visitVECTOR_SHUFFLE).
Such insert_vector_elt and extract_vector_elt combinations can be
lowered efficiently using mov on AArch64.
There are 2 test changes in arm64-neon-copy.ll: we now use one or two
mov instructions instead of a single zip1. The reason that we need a
second mov in ins1f2 is that we have to move the result to the result
register and is not really related to the DAGCombine fold I think.
But in any case, on most uarchs, mov should be cheaper than zip1. On a
Cortex-A75 for example, zip1 is twice as expensive as mov
(https://developer.arm.com/docs/101398/latest/arm-cortex-a75-software-optimization-guide-v20)
Reviewers: spatel, efriedma, dmgreen, RKSimon
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D80710
Summary:
The description of EXTACT_SUBVECTOR and INSERT_SUBVECTOR has been
changed to accommodate scalable vectors (see ISDOpcodes.h). This
patch updates the asserts used to verify these requirements when
using SelectionDAG's getNode interface.
This patch introduces the MVT function getVectorMinNumElements
that can be used against fixed-length and scalable vectors when
only the known minimum vector length is required.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80709
We should be using getVectorElementCount() to assert that two types
have the same numbers of elements. I encountered the warnings while
compiling this test:
CodeGen/AArch64/sve-intrinsics-ld1.ll
Differential Revision: https://reviews.llvm.org/D80616
I have tried to ensure that SelectionDAG and DAGCombiner do
sensible things for scalable vectors, and added support for a
limited number of simple folds. Codegen support for the vector
extract patterns have also been added to the AArch64 backend.
New vector extract tests have been added here:
CodeGen/AArch64/sve-extract-element.ll
and I have also added new folds using inserts and extracts here:
CodeGen/AArch64/sve-insert-element.ll
Differential Revision: https://reviews.llvm.org/D80208
These are the two operand sets which are expected to survive more than another week or so. Instead of bothering to update the deopt and gc-transition operands, we'll just wait until those are removed and delete the code.
For those following along, this is likely to be the last (major) change in this sequence for about a week. I want to wait until all of this has been merged downstream to ensure I haven't introduced any bugs (and migrate some downstream code to the new interfaces). Once that's done, we should be able to delete Statepoint/ImmutableStatepoint without too much work.
I'd apparently only grepped in the lib directories and missed a few used in the Statepoint header itself. Beyond simple mechanical cleanup, changed the type of one routine to reflect the fact it also returns a statepoint.
Sinking logic around actual callee from Statepoint to GCStatepointInst. While doing so, adjust naming to be consistent about refering to "actual" callee and follow precedent on naming from CallBase otherwise.
Use the result to simplify one consumer. This is mostly just to ensure the new code is exercised, but is also a helpful cleanup on it's own.
While LazyBlockFrequencyInfo itself is lazy, the dominator tree
and loop info analyses it requires are not. Drop the dependency
on this pass in SelectionDAGIsel at O0.
This makes for a ~0.6% O0 compile-time improvement.
Differential Revision: https://reviews.llvm.org/D80387
Now that all of the statepoint related routines have classes with isa support, let's cleanup.
I'm leaving the (dead) utitilities in tree for a few days so that I can do the same cleanup downstream without breakage.
Can't test this since I can't directly use the default expansion for
AMDGPU. It needs to scale the amount by the wave size, rather than use
the raw byte size value.
In the current statepoint design, we have four distinct groups of operands to the call: call args, gc transition args, deopt args, and gc args. This format prexisted the support in IR for operand bundles and was in fact one of the inspirations for the extension. However, we never went back and rearchitected statepoints to fully leverage bundles.
This change is the first in a small sequence to do so. All this does is extend the SelectionDAG lowering code to allow deopt and gc transition operands to be specified in either inline argument bundles or operand bundles.
Differential Revision: https://reviews.llvm.org/D8059
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
binop (splat X), (splat C) --> splat (binop X, C)
binop (splat C), (splat X) --> splat (binop C, X)
We do this in IR, and there's a similar fold for the case with 2
non-constant operands just above the code diff in this patch.
This was discussed in D79718, and the extra shuffle in the test
(llvm/test/CodeGen/X86/vector-fshl-128.ll::sink_splatvar) where it
was noticed disappears because demanded elements analysis is no
longer blocked. The large majority of the test diffs seem to be
benign code scheduling changes, but I do see another type of win:
moving the splat later allows binop narrowing in some cases.
Regressions were avoided on x86 and ARM with the INSERT_VECTOR_ELT
restriction.
Differential Revision: https://reviews.llvm.org/D79886
For the supported binops (basic arithmetic, logicals + shifts), if we fail to simplify the demanded vector elts, then call SimplifyMultipleUseDemandedBits and try to peek through ops to remove unnecessary dependencies.
This helps with PR40502.
Differential Revision: https://reviews.llvm.org/D79003
For the 'inverse shift', we currently always perform a subtraction of the original (masked) shift amount.
But for the case where we are handling power-of-2 type widths, we can replace:
(sub bw-1, (and amt, bw-1) ) -> (and (xor amt, bw-1), bw-1) -> (and ~amt, bw-1)
This allows x86 shifts to fold away the and-mask.
Followup to D77301 + D80466.
http://volta.cs.utah.edu:8080/z/Nod0Gr
Differential Revision: https://reviews.llvm.org/D80489
This patch introduces a TargetLowering query, isMulhCheaperThanMulShift.
Currently in DAG Combine, it will transform mulhs/mulhu into a
wider multiply and a shift if the wide multiply is legal.
This TLI function is implemented on 64-bit PowerPC, as it is more desirable to
have multiply-high over multiply + shift for words and doublewords. Having
multiply-high can also aid in further transformations that can be done.
Differential Revision: https://reviews.llvm.org/D78271
Replace with forward declaration and move dependency down to source files that actually need it.
Both TargetLowering.h and TargetMachine.h are 2 of the most expensive headers (top 10) in the ClangBuildAnalyzer report when building llc.
If the caller needs to reponsible for making sure the MaybeAlign
has a value, then we should just make the caller convert it to an Align
with operator*.
I explicitly deleted the relational comparison operators that
were being inherited from Optional. It's unclear what the meaning
of two MaybeAligns were one is defined and the other isn't
should be. So make the caller reponsible for defining the behavior.
I left the ==/!= operators from Optional. But now that exposed a
weird quirk that ==/!= between Align and MaybeAlign required the
MaybeAlign to be defined. But now we use the operator== from
Optional that takes an Optional and the Value.
Differential Revision: https://reviews.llvm.org/D80455
Summary:
For some targets generic combines don't really do much and they
consume a disproportionate amount of time.
There's not really a mechanism in SDISel to tactically disable
combines, but we can have a switch to disable all of them and
let the targets just implement what they specifically need.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79112
We do not have any special handling for constant FP deopt arguments.
They are just spilled to stack or generated in register by MOVS
instruction. This is inefficient and, when we have too many such
constant arguments, may result in register allocation failure.
Instead, we can bitcast such constant FP operands to appropriately
sized integer and record as constant into statepoint and later, into
StackMap.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D80318
Will make it easier to pass the pointer info and alignment
correctly to the loads/stores.
While there also make the i32 stores independent and use a token
factor to join before the load.
Previously this code just used a default constructed
MachinePointerInfo. But we know the accesses are to a fixed stack
object or at least somewhere on the stack.
While there fix the alignment passed to the full vector load/stores.
I don't think this function is currently exercised in tree so I
don't know how to test it. I just noticed it when I removed
non-constant index support in this function.
Differential Revision: https://reviews.llvm.org/D80058
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
We have the getNegatibleCost/getNegatedExpression to evaluate the cost and negate the expression.
However, during negating the expression, the cost might change as we are changing the DAG,
and then, hit the assertion if we negated the wrong expression as the cost is not trustful anymore.
This patch is target to remove the getNegatibleCost to avoid the out of sync with getNegatedExpression,
and check the cost during negating the expression. It also reduce the duplicated code between
getNegatibleCost and getNegatedExpression. And fix the crash for the test in D76638
Reviewed By: RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D77319
Now that load/store alignment is required, we no longer need most
of them. Also switch the getLoadStoreAlignment() helper to return
Align instead of MaybeAlign.
We know the pointer somewhere on the stack, we just don't know
exactly where since the index may be variable.
Differential Revision: https://reviews.llvm.org/D80060
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
The code was calculating an offset from a stack pointer SDValue.
This is exactly what getMemBasePlusOffset does. I also replaced
sizeof(int) with a hardcoded 4. We know the type we're operating
on is 4 bytes. But the size of int that the source code is being
compiled with isn't guaranteed to be 4 bytes.
While here replace another use of getMemBasePlusOffset that was
proceeded with a call to getConstant with the other signature
that call getConstant internally.
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
For now I have changed FoldConstantVectorArithmetic to return early
if we encounter a scalable vector, since the subsequent code assumes
you can perform lane-wise constant folds. However, in future work we
should be able to extend this to look at splats of a constant value
and fold those if possible. I have also added the same code to
FoldConstantArithmetic, since that deals with vectors too.
The warnings I fixed in this patch were being generated by this
existing test:
CodeGen/AArch64/sve-int-arith.ll
Differential Revision: https://reviews.llvm.org/D79421
I've created a new variant of CreateStackTemporary that takes
TypeSize and Align arguments, and made the older instances of
CreateStackTemporary call this new function. This refactoring is
in preparation for more patches in this area related to scalable
vectors and improving the alignment calculations.
Differential Revision: https://reviews.llvm.org/D79933
The fact that loads and stores can have the alignment missing is a
constant source of confusion: code that usually works can break down in
rare cases. So fix the LoadInst API so the alignment is never missing.
To reduce the number of changes required to make this work, IRBuilder
and certain LoadInst constructors will grab the module's datalayout and
compute the alignment automatically. This is the same alignment
instcombine would eventually apply anyway; we're just doing it earlier.
There's a minor risk that the way we're retrieving the datalayout
could break out-of-tree code, but I don't think that's likely.
This is the last in a series of patches, so most of the necessary
changes have already been merged.
Differential Revision: https://reviews.llvm.org/D77454
Use an extra shift-by-1 instead of a compare and select to handle the
shift-by-zero case. This sometimes saves one instruction (if the compare
couldn't be combined with a previous instruction). It also works better
on targets that don't have good select instructions.
Note that currently this change doesn't affect most targets because
expandFunnelShift is not used because funnel shift intrinsics are
lowered early in SelectionDAGBuilder. But there is work afoot to change
that; see D77152.
Differential Revision: https://reviews.llvm.org/D77301
It sounds like an interesting idea in theory, but nothing is actually
taking advantage of it, and specifying/implementing the edge cases is
painful. So just forbid it.
Differential Revision: https://reviews.llvm.org/D79814
I have fixed up some places in SelectionDAG::getNode() where we
used to assert that the number of vector elements for two types
are the same. I have changed such cases to assert that the
element counts are the same instead. I've added new tests that
exercise the code paths for all the truncations. All the extend
operations are covered by this existing test:
CodeGen/AArch64/sve-sext-zext.ll
For the ISD::SETCC case I fixed this code path is exercised by
these existing tests:
CodeGen/AArch64/sve-fcmp.ll
CodeGen/AArch64/sve-intrinsics-int-compares-with-imm.ll
Differential Revision: https://reviews.llvm.org/D79399
allocas in LLVM IR have a specified alignment. When that alignment is
specified, the alloca has at least that alignment at runtime.
If the specified type of the alloca has a higher preferred alignment,
SelectionDAG currently ignores that specified alignment, and increases
the alignment. It does this even if it would trigger stack realignment.
I don't think this makes sense, so this patch changes that.
I was looking into this for SVE in particular: for SVE, overaligning
vscale'ed types is extra expensive because it requires realigning the
stack multiple times, or using dynamic allocation. (This currently isn't
implemented.)
I updated the expected assembly for a couple tests; in particular, for
arg-copy-elide.ll, the optimization in question does not increase the
alignment the way SelectionDAG normally would. For the rest, I just
increased the specified alignment on the allocas to match what
SelectionDAG was inferring.
Differential Revision: https://reviews.llvm.org/D79532
We have the getNegatibleCost/getNegatedExpression to evaluate the cost and negate the expression.
However, during negating the expression, the cost might change as we are changing the DAG,
and then, hit the assertion if we negated the wrong expression as the cost is not trustful anymore.
This patch is target to remove the getNegatibleCost to avoid the out of sync with getNegatedExpression,
and check the cost during negating the expression. It also reduce the duplicated code between
getNegatibleCost and getNegatedExpression. And fix the crash for the test in D76638
Reviewed By: RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D77319
This patch stores the alignment for ConstantPoolSDNode as an
Align and updates the getConstantPool interface to take a MaybeAlign.
Removing getAlignment() will be done as a follow up.
Differential Revision: https://reviews.llvm.org/D79436
If the SimplifyMultipleUseDemandedBits calls BITCASTs that peek through back to the original type then we can remove the BITCASTs entirely.
Differential Revision: https://reviews.llvm.org/D79572
Summary:
This patch handles illegal scalable types when lowering IR operations,
addressing several places where the value of isScalableVector() is
ignored.
For types such as <vscale x 8 x i32>, this means splitting the
operations. In this example, we would split it into two
operations of type <vscale x 4 x i32> for the low and high halves.
In cases such as <vscale x 2 x i32>, the elements in the vector
will be promoted. In this case they will be promoted to
i64 (with a vector of type <vscale x 2 x i64>)
Reviewers: sdesmalen, efriedma, huntergr
Reviewed By: efriedma
Subscribers: david-arm, tschuett, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78812
Calling getShiftAmountTy with LegalTypes set may return a type that's too narrow to hold the shift amount for integer type it's applied to.
Fixes the regression introduced by D79096
Differential Revision: https://reviews.llvm.org/D79405
Try to combine N short vector cast ops into 1 wide vector cast op:
concat (cast X), (cast Y)... -> cast (concat X, Y...)
This is part of solving PR45794:
https://bugs.llvm.org/show_bug.cgi?id=45794
As noted in the code comment, this is uglier than I was hoping because
the opcode determines whether we pass the source or destination type
to isOperationLegalOrCustom(). Also IIUC, there's no way to validate
what the other (dest or src) type is. Without the extra legality check
on that, there's an ARM regression test in:
test/CodeGen/ARM/isel-v8i32-crash.ll
...that will crash trying to lower an unsupported v8f32 to v8i16.
Differential Revision: https://reviews.llvm.org/D79360
Summary:
I have fixed several places in getSplatSourceVector and isSplatValue
to work correctly with scalable vectors. I added new support for
the ISD::SPLAT_VECTOR DAG node as one of the obvious cases we can
support with scalable vectors. In other places I have tried to do
the sensible thing, such as bail out for vector types we don't yet
support or don't intend to support.
It's not possible to add IR test cases to cover these changes, since
they are currently only ever exercised on certain targets, e.g.
only X86 targets use the result of getSplatSourceVector. I've
assumed that X86 tests already exist to test these code paths for
fixed vectors. However, I have added some AArch64 unit tests that
test the specific functions I have changed.
Differential revision: https://reviews.llvm.org/D79083
We allocated a suitably aligned frame index so we know that all the values
have ABI alignment.
For MIPS this avoids using pair of lwl + lwr instructions instead of a
single lw. I found this when compiling CHERI pure capability code where
we can't use the lwl/lwr unaligned loads/stores and and were to falling
back to a byte load + shift + or sequence.
This should save a few instructions for MIPS and possibly other backends
that don't have fast unaligned loads/stores.
It also improves code generation for CodeGen/X86/pr34653.ll and
CodeGen/WebAssembly/offset.ll since they can now use aligned loads.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D78999
The two code paths have the same goal, legalizing a load of a non-byte-sized vector by loading the "flattened" representation in memory, slicing off each single element and then building a vector out of those pieces.
The technique employed by `ExpandLoad` is slightly more convoluted and produces slightly better codegen on ARM, AMDGPU and x86 but suffers from some bugs (D78480) and is wrong for BE machines.
Differential Revision: https://reviews.llvm.org/D79096
rL368553 added SimplifyMultipleUseDemandedBits handling for ISD::TRUNCATE to SimplifyDemandedBits so we don't need to duplicate this (and it gets rid of another GetDemandedBits call which is slowly being replaced with SimplifyMultipleUseDemandedBits anyhow).
Also fix some cost tables for vXi1 types to match the costs entries for the types they will be promoted to.
Differential Revision: https://reviews.llvm.org/D79045
X86 matches several 'shift+xor' funnel shift patterns:
fold (or (srl (srl x1, 1), (xor y, 31)), (shl x0, y)) -> (fshl x0, x1, y)
fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) -> (fshr x0, x1, y)
fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) -> (fshr x0, x1, y)
These patterns are also what we end up with the proposed expansion changes in D77301.
This patch moves these to DAGCombine's generic MatchFunnelPosNeg.
All existing X86 test cases still pass, and we just have a small codegen change in pr32282.ll.
Reviewed By: @spatel
Differential Revision: https://reviews.llvm.org/D78935
Summary:
This patch tries to ensure that we do something sensible when
generating code for the ISD::INSERT_VECTOR_ELT DAG node when operating
on scalable vectors. Previously we always returned 'undef' when
inserting an element into an out-of-bounds lane index, whereas now
we only do this for fixed length vectors. For scalable vectors it
is assumed that the backend will do the right thing in the same way
that we have to deal with variable lane indices.
In this patch I have permitted a few basic combinations for scalable
vector types where it makes sense, but in general avoided most cases
for now as they currently require the use of BUILD_VECTOR nodes.
This patch includes tests for all scalable vector types when inserting
into lane 0, but I've only included one or two vector types for other
cases such as variable lane inserts.
Differential Revision: https://reviews.llvm.org/D78992
Call getNegatedExpression(Cost) and check the Cost to make the code more clear.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D78347